GPU Parallelization of Algebraic Dynamic Programming

Peter Steffen!, Robert Giegerich1 and Mathieu Giraud?

I Bielefeld University, Faculty of Technology, Germany
2CNRS, LIFL, Université Lille 1, France

April 28, 2010

’”3{9’

1 GPU Parallelization of ADP



Topic of this talk

@ We have developed a generic approach to Dynamic Programming:
Algebraic Dynamic Programming (ADP)

@ The ADP compiler automatically generates C code for ADP
algorithms

@ Our new result is the extension of the ADP compiler, such that it
generates CUDA code for Nvidia graphic cards

=
$ed

2 GPU Parallelization of ADP



Dynamic Programming (DP)

Dynamic Programming (DP) is useful in
@ Sequence comparison

da_rling darling
_airline _airline_
DRIRRRRR DRIRRRRID

@ RNA secondary structure prediction

Bulge Loop (right)

@ DP evaluates exponential search space in polynomial runtime G
@ many more applications, also beyond biosequence analysis @

3 GPU Parallelization of ADP

%

ped



DP matrix recurrences

DP matrix recurrence for a local alignment:

alignment; ; = max(
[0lj —i > 0] ++
[if ziy1 == z; then alignmentyqj_1 + 4
else alignment;qj_1 — 3|j — i > 2] ++
[xDel;s1; — 16]j — i > 1] ++
[xIns; j_1 —16|j — i > 1])

Typical DP recurrences are
o difficult to find and justify
o difficult to re-use

@ nearly impossible to debug =

\‘”3‘&'

4 GPU Parallelization of ADP



Algebraic Dynamic Programming (ADP)

@ a declarative method of Dynamic Programming over sequence data

o developed since 2000 by Robert Giegerich, Dirk Evers, Carsten Meyer,
Peter Steffen, and others

@ used in bioinformatics tools pknotsRG(2003), RNAshapes(2004),
RNAhybrid(2004), RNAcast(2005), Locomotif (2006)

@ Giegerich, R. and Meyer, C. and Steffen, P.: A Discipline of Dynamic Programming over Sequence Data in Science of
Computer Programming, 51(3) , Pages:215-263, 2004

@ Reeder, Jens and Giegerich, Robert: Design, implementation and evaluation of a practical pseudoknot folding algorithm
based on thermodynamics in BMC Bioinformatics, 5(104) , 2004

@ Rehmsmeier, M. and Steffen, P. and Héchsmann, M. and Giegerich, R.: Fast and effective prediction of
microRNA /target duplexes in RNA, 10, Pages:1507-1517, 2004

*] Giegerich, R. and Voss, B. and Rehmsmeier, M.: Abstract Shapes of RNA in Nucleic Acids Res., 32(16),
Pages:4843-4851, 2004

@ Reeder, Jens and Giegerich, Robert: Consensus shapes: an alternative to the Sankoff algorithm for RNA consensus
structure prediction in Bioinformatics, 21(17) , Pages:3516-3523, 2005

@ Voss, Bjorn and Giegerich, Robert and Rehmsmeier, Marc: Complete probabilistic analysis of RNA shapes in BMC
Biology, 4(5), 2006 —
gy, 4(5) =

@ Steffen, P. and Voss, B. and Rehmsmeier, M. and Reeder, J. and Giegerich, R.: RNAshapes: an integrated RNA apalysis
package based on abstract shapes in Bioinformatics, 22(4) , Pages:500-503, 2006

GPU Parallelization of ADP




Algebraic Dynamic Programming (ADP)

Example: a Nussinov type RNA secondary structure prediction
The specification of an ADP algorithm consists of four constituents:

o Alphabet: The input RNA sequence is a string over the alphabet
A={ac, g,u}.

o Search space: Given an input sequence w € A*, the search space is
the set of all possible secondary structures the sequence w can form.

gucaugcaguguca
LGN D
gucaugcaguguca
G, ty =
Split
t = Right Pair
Split. | VARN
T~ Nil g w’ Split a
Pair Split N
I N\ Right Split
g Split w Pair Right
al I\ Nil ¢ Pair Right
Right Right e’ Pa W Right a’ | I\
I\ el AN 2 Pair w o Nil e
Nil Rigl @’ Split g’ Nil |
| e Pair g
Nil Right Right |
| | w” Split
Nil a R.Tm u
Right. Right B
N I\ I
Nil ¢ Right g &

S
A bl




Algebraic Dynamic Programming (ADP)

The search space is described by a tree grammar:

nussinov78 Z =s

s — nil | right | pair | split

| / \ /| \ with basepairing  /\

empty s base base s base

The number of candidates is exponential in the length of the input
sequence.

\‘”3‘&'

7 GPU Parallelization of ADP



Algebraic Dynamic Programming (ADP)

o Scoring: Given an element of the search space as a tree, we need to
score this element. Here, we are only interested in counting base
pairs. So, we assign a score for every candidate.

bpmax = (nil, right, pair, split, h) where

nil(s) = 0
right(s,b) = s
pair(a,s,b) = s+ 1
split(s,s’) = s+ s

8 GPU Parallelization of ADP



Algebraic Dynamic Programming (ADP)

o Scoring: Given an element of the search space as a tree, we need to
score this element. Here, we are only interested in counting base
pairs. So, we assign a score for every candidate.

bpmax = (nil, right, pair, split, h) where

nil(s) = 0
right(s,b) = s
pair(a,s,b) = s+ 1
split(s,s’) = s+ s
h([1) = 0
h(lst,...,s1) = [maxs]
1<i<

o Objective: We need to choose one or several solutions from the pool
of candidates. For this purpose, we add an objective function h which
chooses one or more elements from a list of candidate scores.

@ Scoring schemes with objective functions are called evaluation -
algebras in ADP. 3

8 GPU Parallelization of ADP




RNAfold — Complete grammar

rnafold alg f = axiom struct where
(sadd,cadd,is,sr,hl,bl,br, il, ili11, il12, il21, il22,
dl, dr, dlr, edl, edr, edlr, drem, cons, ul, pul, addss, ssadd, nil, combine, h) = alg

struct = tabulated (
sadd <<< base ~~~ struct |||
cadd <<< initstem ~~~ struct |||
nil <<< empty ... h)
initstem = tabulated (is <<< loc ~~~ closed ~~~ loc ... h)
closed = tabulated (
stack ||| ((hairpin ||| leftB Il rightB ||| iloop ||| multiloop) ‘with¢ stackpairing)
stack = (sr <<< base """ closed """ base) ‘with‘ basepairing ... h
hairpin = hl <<< base """ base """ (region ‘with‘ (minsize 3)) """ base """ base ... h
leftB = bl <<< base """ base """ region “7" initstem ~77 base """ base ... h
rightB =br <<< base """ base """ initstem """ region " base "7" base h
iloop = il <<< base """ base """ (region ‘with‘ (maxsize 30)) "~~~ closed ~
(region ‘with‘ (maxsize 30)) ~~~ base "~~~ base ... h
comps = tabulated (
cons <<< block ~~~ comps 11
block I
addss <<< block "~~~ region ... h)
block = tabulated (
ul <<< initstem I
ssadd  <<< region """ initstem ... h)

GPU Parallelization of ADP



ADP Compiler

adpc

make

RNAfold.c RNAfold

RNAfold.lhs

adpc —cuda

RNAfold.cu RNAfold—cuda
@ The ADP compiler translates ADP algorithms into C

@ We have developed an extension to the compiler, that automatically
generates CUDA code for NVIDIA graphic cards

GPU Parallelization of ADP



RNAfold — Parallelization

o All elements (/,/) on the same
diagonal are independent: one
thread per element

@ The element (i, ) needs the
O((j — i)?) elements in the
underlying triangle.

o This is generic to all ADP
programs (results are combined
from results of shorter
subsequences)

GPU Parallelization of ADP



RNAfold — CUDA code

__global__ static void calc_all(int diag, int n) {
int i = blockIdx.x*blockDim.x+threadIdx.x;
int j = i + diag;
if ((i <= n) && (j <= n)) {
calc_closed(i, j);
calc_initstem(i, j);
calc_struct(i, j);
calc_block(i, j);
calc_comps (i, j);

}

static void mainloop(){
for (int diag=0; diag<=n; diag++) {
...
calc_all <<< grid, threads >>> (diag, n);
}

GPU Parallelization of ADP



RNAfold — Window mode

@ n can be very large (genome),

o but RNA folds are only on a few tens/hundred bases.

0 j n 0 w n

7

0

not needed

window

n

genome

O(n?) memory / O(n%) time O(nw) memory / O(nw?) time Tmm
5

w

2

GPU Parallelization of ADP



Results — ADP + CUDA (2009)

Tests on C. Carsonella ruddii, n = 160 kbp

Xeon 3.0 GHz (1 core)
Grammar, window size, time complexity + Nvidia GTX 280
CPU | GPU | speedup

RNAfold.lhs -w 80 O(w?n) || 3557 | 359 | 9.9x

o RNAfold: divergence (large computations for only 6/16 threads)
[Rizk, Lavenier 09]: speedup of 17x

GPU Parallelization of ADP



Results — ADP + CUDA (2009)

Tests on C. Carsonella ruddii, n = 160 kbp

Xeon 3.0 GHz (1 core)

Grammar, window size, time complexity + Nvidia GTX 280
CPU | GPU | speedup

RNAfold-bp.lhs -w 80 O(w?n) || 133.77 | 5.18 25.8%

RNAfold.lhs -w 80 O(w?n) || 3557 | 359 | 9.9x

o RNAfold: divergence (large computations for only 6/16 threads)
[Rizk, Lavenier 09]: speedup of 17x

@ RNAfold-bp: toy computation, no divergence -

GPU Parallelization of ADP



Results — ADP + CUDA (2009)

Tests on C. Carsonella ruddii, n = 160 kbp (pknotsRG: n = 20 kbp)

Xeon 3.0 GHz (1 core)
Grammar, window size, time complexity + Nvidia GTX 280
CPU | GPU | speedup
RNAfold-bp.lhs -w 80 O(w?n) || 133.77 | 5.18 25.8x
RNAfold.lhs -w 80 O(w?n) || 3557 | 3.59 9.9x
tRNA-matcher.lhs -w 100 O(w?n) || 43.60 | 3.01 14.5x%

O(

o(

pknotRG.lhs -w 80 wn) || 2354 | 3.25 7.2%
pknotRG.lhs -w 160 w3n) || 166.27 | 27.22 6.1x

o RNAfold: divergence (large computations for only 6/16 threads)
[Rizk, Lavenier 09]: speedup of 17x

@ RNAfold-bp: toy computation, no divergence -

GPU Parallelization of ADP



Preliminary Results — ADP + OpenCL (April 2010)

Tests on C. Carsonella ruddii, n = 160 kbp

Xeon 2.6 GHz
Grammar + Nvidia SDK + ATI/AMD SDK
CUDA OpenCL || OpenCL | OpenCL
CPU || 285 GTX | 285 GTX CPU HD 4890
RNAfold-bp 90.85 7.95 10.66 36.24 16.41
RNAfold 35.57 5.30 9.9 12.06 18.67

@ same OpenCL code for NVIDIA and ATI/AMD SDKs
o with ATI/AMD SDK: better than regular C code, even without GPU...

@ on NVIDIA: OpenCL a little slower than CUDA

@ on AMD: we should explore other optimization techniques

GPU Parallelization of ADP




Conclusion

@ We implemented a parallel GPU CUDA backend for the ADP
compiler, which works out-of-the-box for several grammars dealing
with RNA sequences

@ Our approach is generic and requires few efforts to the user, even if
the speedups are not the best ones that could be obtained by
manually optimized implementations

\‘”3‘&'

GPU Parallelization of ADP



o Shared/local memory.
o Difficult to automatically deduce from ADP grammar
o Generate from hints in the grammar?

o Static evaluation of grammars.

o Test other grammars (bioinformatics, other domains)
o Which grammars are efficient to parallelize, and why?

o Other targets.

o OpenCL, AMD/ATI cards, multicore CPU...
o ADP: generic methodology, portable solutions

Y

GPU Parallelization of ADP



More information

ADP website:
http://bibiserv.techfak.uni-bielefeld.de/adp

ADP CUDA website:
http://bibiserv.techfak.uni-bielefeld.de/adp/cuda.html

£
\‘”3‘&'

GPU Parallelization of ADP



