
GPU Parallelization of Algebraic Dynamic Programming

Peter Steffen1, Robert Giegerich1 and Mathieu Giraud2

1Bielefeld University, Faculty of Technology, Germany
2CNRS, LIFL, Université Lille 1, France

April 28, 2010

1 GPU Parallelization of ADP

Topic of this talk

We have developed a generic approach to Dynamic Programming:
Algebraic Dynamic Programming (ADP)

The ADP compiler automatically generates C code for ADP
algorithms

Our new result is the extension of the ADP compiler, such that it
generates CUDA code for Nvidia graphic cards

2 GPU Parallelization of ADP

Dynamic Programming (DP)

Dynamic Programming (DP) is useful in

Sequence comparison

da rling da rlin g
airline airline
DRIRRRRR DRIRRRRID

RNA secondary structure prediction

C

U

G
C

A

G

U
A

G

G

U U G
G

U
C C

G

C
G

C

G

U C

U
G

CU
G

C
GG

U

G
C

C G

G

A

AU

C

G

U

C

G

G

U

U

G

G

Multiple Loop

Stacking Region

Hairpin Loop

Internal Loop

Bulge Loop (left)

Bulge Loop (right)

C

C A

C

UGG
C

G
CC

G

C
G

G

G
C

C

G

A

C
G

UC

G A

CU

A G

G C
C

G

C

U

C

G
GA

A

A

C

G

G

G

G

U

A

C

C

G

C

G

U
U

C

C
C

A

C

U

A

G

G

C

G

C

C

G
G

DP evaluates exponential search space in polynomial runtime

many more applications, also beyond biosequence analysis

3 GPU Parallelization of ADP

DP matrix recurrences

DP matrix recurrence for a local alignment:

alignment i,j = max(

[0|j − i ≥ 0] ++

[if zi+1 == zj then alignment i+1,j−1 + 4

else alignment i+1,j−1 − 3|j − i ≥ 2] ++

[xDel i+1,j − 16|j − i ≥ 1] ++

[xIns i,j−1 − 16|j − i ≥ 1])

Typical DP recurrences are

difficult to find and justify

difficult to re-use

nearly impossible to debug

4 GPU Parallelization of ADP

Algebraic Dynamic Programming (ADP)

a declarative method of Dynamic Programming over sequence data
developed since 2000 by Robert Giegerich, Dirk Evers, Carsten Meyer,
Peter Steffen, and others
used in bioinformatics tools pknotsRG (2003), RNAshapes(2004),
RNAhybrid(2004), RNAcast(2005), Locomotif (2006)
Giegerich, R. and Meyer, C. and Steffen, P.: A Discipline of Dynamic Programming over Sequence Data in Science of

Computer Programming, 51(3) , Pages:215-263, 2004

Reeder, Jens and Giegerich, Robert: Design, implementation and evaluation of a practical pseudoknot folding algorithm

based on thermodynamics in BMC Bioinformatics, 5(104) , 2004

Rehmsmeier, M. and Steffen, P. and Höchsmann, M. and Giegerich, R.: Fast and effective prediction of

microRNA/target duplexes in RNA, 10, Pages:1507-1517, 2004

Giegerich, R. and Voss, B. and Rehmsmeier, M.: Abstract Shapes of RNA in Nucleic Acids Res., 32(16),

Pages:4843-4851, 2004

Reeder, Jens and Giegerich, Robert: Consensus shapes: an alternative to the Sankoff algorithm for RNA consensus

structure prediction in Bioinformatics, 21(17) , Pages:3516-3523, 2005

Voss, Björn and Giegerich, Robert and Rehmsmeier, Marc: Complete probabilistic analysis of RNA shapes in BMC

Biology, 4(5), 2006

Steffen, P. and Voss, B. and Rehmsmeier, M. and Reeder, J. and Giegerich, R.: RNAshapes: an integrated RNA analysis

package based on abstract shapes in Bioinformatics, 22(4) , Pages:500-503, 2006

5 GPU Parallelization of ADP

Algebraic Dynamic Programming (ADP)

Example: a Nussinov type RNA secondary structure prediction
The specification of an ADP algorithm consists of four constituents:

Alphabet: The input RNA sequence is a string over the alphabet
A = {a, c , g , u}.
Search space: Given an input sequence w ∈ A∗, the search space is
the set of all possible secondary structures the sequence w can form.

gucaugcaguguca

(...)((...))..

t1 =
Split

Pair

’g’ Split

Right

Nil ’u’

Right

Right

Nil ’c’

’a’

’u’

Split

Pair

’g’ Pair

’c’ Split

Right

Nil ’a’

Right

Right

Nil ’g’

’u’

’g’

’u’

Right

Right

Nil ’c’

’a’

gucaugcaguguca

.(.(((...))).)

t2 =
Split

Right

Nil ’g’

Pair

’u’ Split

Right

Nil ’c’

Split

Pair

’a’ Pair

’u’ Pair

’g’ Split

Right

Nil ’c’

Right

Right

Nil ’a’

’g’

’u’

’g’

’u’

Right

Nil ’c’

’a’

6 GPU Parallelization of ADP

Algebraic Dynamic Programming (ADP)

The search space is described by a tree grammar :

nussinov78 Z = s

s → nil

empty

| right

s base

| pair

base s base
with basepairing

| split

s s

The number of candidates is exponential in the length of the input
sequence.

7 GPU Parallelization of ADP

Algebraic Dynamic Programming (ADP)

Scoring: Given an element of the search space as a tree, we need to
score this element. Here, we are only interested in counting base
pairs. So, we assign a score for every candidate.

bpmax = (nil, right, pair, split, h) where

nil(s) = 0

right(s,b) = s

pair(a,s,b) = s + 1

split(s,s’) = s + s’

h([]) = []

h([s1, . . . , sr]) = [max
1≤i≤r

si]

Objective: We need to choose one or several solutions from the pool
of candidates. For this purpose, we add an objective function h which
chooses one or more elements from a list of candidate scores.

Scoring schemes with objective functions are called evaluation
algebras in ADP.

8 GPU Parallelization of ADP

Algebraic Dynamic Programming (ADP)

Scoring: Given an element of the search space as a tree, we need to
score this element. Here, we are only interested in counting base
pairs. So, we assign a score for every candidate.

bpmax = (nil, right, pair, split, h) where

nil(s) = 0

right(s,b) = s

pair(a,s,b) = s + 1

split(s,s’) = s + s’

h([]) = []

h([s1, . . . , sr]) = [max
1≤i≤r

si]

Objective: We need to choose one or several solutions from the pool
of candidates. For this purpose, we add an objective function h which
chooses one or more elements from a list of candidate scores.

Scoring schemes with objective functions are called evaluation
algebras in ADP.

8 GPU Parallelization of ADP

RNAfold – Complete grammar

rnafold alg f = axiom struct where

(sadd,cadd,is,sr,hl,bl,br, il, il11, il12, il21, il22,

dl, dr, dlr, edl, edr, edlr, drem, cons, ul, pul, addss, ssadd, nil, combine, h) = alg

struct = tabulated (

sadd <<< base ~~~ struct |||

cadd <<< initstem ~~~ struct |||

nil <<< empty ... h)

initstem = tabulated (is <<< loc ~~~ closed ~~~ loc ... h)

closed = tabulated (

stack ||| ((hairpin ||| leftB ||| rightB ||| iloop ||| multiloop) ‘with‘ stackpairing) ... h)

stack = (sr <<< base ~~~ closed ~~~ base) ‘with‘ basepairing ... h

hairpin = hl <<< base ~~~ base ~~~ (region ‘with‘ (minsize 3)) ~~~ base ~~~ base ... h

leftB = bl <<< base ~~~ base ~~~ region ~~~ initstem ~~~ base ~~~ base ... h

rightB = br <<< base ~~~ base ~~~ initstem ~~~ region ~~~ base ~~~ base ... h

iloop = il <<< base ~~~ base ~~~ (region ‘with‘ (maxsize 30)) ~~~ closed ~~~

(region ‘with‘ (maxsize 30)) ~~~ base ~~~ base ... h

comps = tabulated (

cons <<< block ~~~ comps |||

block |||

addss <<< block ~~~ region ... h)

block = tabulated (

ul <<< initstem |||

ssadd <<< region ~~~ initstem ... h)

9 GPU Parallelization of ADP

ADP Compiler

makeadpc −cuda

adpc
RNAfold

RNAfold!cudaRNAfold.cu

RNAfold.c

RNAfold.lhs

make

The ADP compiler translates ADP algorithms into C

We have developed an extension to the compiler, that automatically
generates CUDA code for NVIDIA graphic cards

10 GPU Parallelization of ADP

RNAfold – Parallelization

All elements (i , j) on the same
diagonal are independent: one
thread per element

The element (i , j) needs the
O((j − i)2) elements in the
underlying triangle.

This is generic to all ADP
programs (results are combined
from results of shorter
subsequences)

11 GPU Parallelization of ADP

RNAfold – CUDA code

__global__ static void calc_all(int diag, int n) {

int i = blockIdx.x*blockDim.x+threadIdx.x;

int j = i + diag;

if ((i <= n) && (j <= n)) {

calc_closed(i, j);

calc_initstem(i, j);

calc_struct(i, j);

calc_block(i, j);

calc_comps(i, j);

}

}

static void mainloop(){

for (int diag=0; diag<=n; diag++) {

(...)

calc_all <<< grid, threads >>> (diag, n);

}

}

12 GPU Parallelization of ADP

RNAfold – Window mode

n can be very large (genome),

but RNA folds are only on a few tens/hundred bases.

O(n2) memory / O(n3) time O(nw) memory / O(nw2) time

13 GPU Parallelization of ADP

Results – ADP + CUDA (2009)

Tests on C. Carsonella ruddii, n = 160 kbp (pknotsRG: n = 20 kbp)

Xeon 3.0 GHz (1 core)
Grammar, window size, time complexity + Nvidia GTX 280

CPU GPU speedup

RNAfold-bp.lhs -w 80 O(w2n) 133.77 5.18 25.8×
RNAfold.lhs -w 80 O(w2n) 35.57 3.59 9.9×
tRNA-matcher.lhs -w 100 O(w2n) 43.60 3.01 14.5×
pknotRG.lhs -w 80 O(w3n) 23.54 3.25 7.2×
pknotRG.lhs -w 160 O(w3n) 166.27 27.22 6.1×

RNAfold: divergence (large computations for only 6/16 threads)
[Rizk, Lavenier 09]: speedup of 17×

RNAfold-bp: toy computation, no divergence

14 GPU Parallelization of ADP

Results – ADP + CUDA (2009)

Tests on C. Carsonella ruddii, n = 160 kbp (pknotsRG: n = 20 kbp)

Xeon 3.0 GHz (1 core)
Grammar, window size, time complexity + Nvidia GTX 280

CPU GPU speedup

RNAfold-bp.lhs -w 80 O(w2n) 133.77 5.18 25.8×
RNAfold.lhs -w 80 O(w2n) 35.57 3.59 9.9×
tRNA-matcher.lhs -w 100 O(w2n) 43.60 3.01 14.5×
pknotRG.lhs -w 80 O(w3n) 23.54 3.25 7.2×
pknotRG.lhs -w 160 O(w3n) 166.27 27.22 6.1×

RNAfold: divergence (large computations for only 6/16 threads)
[Rizk, Lavenier 09]: speedup of 17×

RNAfold-bp: toy computation, no divergence

14 GPU Parallelization of ADP

Results – ADP + CUDA (2009)

Tests on C. Carsonella ruddii, n = 160 kbp (pknotsRG: n = 20 kbp)

Xeon 3.0 GHz (1 core)
Grammar, window size, time complexity + Nvidia GTX 280

CPU GPU speedup

RNAfold-bp.lhs -w 80 O(w2n) 133.77 5.18 25.8×
RNAfold.lhs -w 80 O(w2n) 35.57 3.59 9.9×
tRNA-matcher.lhs -w 100 O(w2n) 43.60 3.01 14.5×
pknotRG.lhs -w 80 O(w3n) 23.54 3.25 7.2×
pknotRG.lhs -w 160 O(w3n) 166.27 27.22 6.1×

RNAfold: divergence (large computations for only 6/16 threads)
[Rizk, Lavenier 09]: speedup of 17×

RNAfold-bp: toy computation, no divergence

14 GPU Parallelization of ADP

Preliminary Results – ADP + OpenCL (April 2010)

Tests on C. Carsonella ruddii, n = 160 kbp

Xeon 2.6 GHz
Grammar + Nvidia SDK + ATI/AMD SDK

CUDA OpenCL OpenCL OpenCL
CPU 285 GTX 285 GTX CPU HD 4890

RNAfold-bp 90.85 7.95 10.66 36.24 16.41
RNAfold 35.57 5.30 9.9 12.06 18.67

same OpenCL code for NVIDIA and ATI/AMD SDKs

with ATI/AMD SDK: better than regular C code, even without GPU...

on NVIDIA: OpenCL a little slower than CUDA

on AMD: we should explore other optimization techniques

15 GPU Parallelization of ADP

Conclusion

We implemented a parallel GPU CUDA backend for the ADP
compiler, which works out-of-the-box for several grammars dealing
with RNA sequences

Our approach is generic and requires few efforts to the user, even if
the speedups are not the best ones that could be obtained by
manually optimized implementations

16 GPU Parallelization of ADP

Outlook

Shared/local memory.

Difficult to automatically deduce from ADP grammar
Generate from hints in the grammar?

Static evaluation of grammars.

Test other grammars (bioinformatics, other domains)
Which grammars are efficient to parallelize, and why?

Other targets.

OpenCL, AMD/ATI cards, multicore CPU...
ADP: generic methodology, portable solutions

17 GPU Parallelization of ADP

More information

ADP website:
http://bibiserv.techfak.uni-bielefeld.de/adp

ADP CUDA website:
http://bibiserv.techfak.uni-bielefeld.de/adp/cuda.html

18 GPU Parallelization of ADP

