No. d’ordre: 017-2009

Année 2009

THESE
présentée devant I’Université Claude Bernard - LYON I
pour 'obtention du
DIPLOME DE DOCTORAT
(arrété du 7 aodt 2006)
Soutenue le 30 janvier 2009

par

Marilia D. V. BRAGA

L’ESPACE DE SOLUTIONS DU TRI PAR INVERSIONS ET SON
UTILISATION DANS L’ANALYSE DE REARRANGEMENTS DE GENOMES

EXPLORING THE SOLUTION SPACE OF SORTING BY REVERSALS
WHEN ANALYZING GENOME REARRANGEMENTS

COMPOSITION DU JURY

Christian GAUTIER, Président
Eduardo ROCHA, Rapporteur
Marie-France SAGOT, Directrice
David SANKOFF, Rapporteur

Eric TANNIER, Co-encadrant

UMR CNRS 5558
Laboratoire de Biométrie et Biologie Evolutive
Université Claude Bernard LYON I - Bat G. Mendel
43, boulevard du 11 novembre 1918
69622 Villeurbanne

Mis en page avec la classe thloria.

ACKNOWLEDGMENTS

I would like to express all my greateful thanks to Marie-France Sagot, Eric Tannier, Chris-
tian Gautier, Gabriel Marais, Fabrice Vavre, Guillaume Fertin, Eduardo Rocha, David Sankoff,
Jens Stoye, Joao Meidanis, Jodo Carlos Setubal, Nathalie Arbasetti, Isabelle Ravis, Gaelle
Tworkowski, Lionel Humblot, Stéphane Delmotte, Bruno Spataro, my family and all my friends
in Lyon and in Brazil.

This work was funded by the European Union Programme Alfan (scholarship no. E05D053131BR),
the French projects ANR (REGLIS NT05-3_45205 and MIRI BLANO8-1_335497), INRIA Ar-

colris (associated with the University of Sdo Paulo, Brazil) and Rhone-Alpes Bioinformatics
Center (PRABI).

II

To my parents, Anténio Fernando and Maria Inés.

II1

v

RESUME

Le calcul de la distance d’inversion et celui d’une séquence optimale d’inversions pour transformer
un génome dans un autre sont des outils algorithmiques trés utiles pour ’analyse de scénarios
d’évolution réels. Quand les duplications de génes ne sont pas acceptées, il existe des algorithmes
polynomiaux pour résoudre ces deux problémes. Néanmoins, le nombre de séquences optimales
différentes est trés grand, et il faut alors considérer d’autres critéres pour pouvoir réaliser une
analyse plus précise.

Une stratégie possible est celle de chercher les séquences qui respectent certaines contraintes
biologiques, comme par exemple les intervalles communs, qui sont les ensembles de génes co-
localisés dans les génomes analysés - une séquence d’inversions qui ne sépare pas les intervalles
communs doit étre plus réaliste qu'une séquence qui sépare. Une autre approche est celle de
générer 1'univers de toutes les séquences optimales, mais, comme cet ensemble peut étre trop
grand pour étre interpreté, un modéle pour regrouper des sous-ensembles de séquences optimales
dans des classes d’équivalence a été proposé, ce qui permet de réduire la taille de ’ensemble
& traiter. Néanmoins, le probléme de trouver les classes sans énumérer toutes les solutions
optimales restait ouvert. Un de nos résultats les plus importants est, donc, 'algorithme qui
donne une réponse a ce probléme, c’est-a-dire, un algorithme qui génére une séquence optimale
par classe d’équivalence et qui donne aussi le nombre de séquences par classe, sans énumeérer
toutes les séquences. Mais, bien que le nombre de classes soit beaucoup plus petit que le nombre
de séquences, il peut étre encore trop grand.

On propose alors 1'utilisation de différentes contraintes biologiques, comme les intervalles
communs (détectés initialement et progressivement), pour réduire le nombre de classes, et on
montre comment utiliser ces méthodes pour analyser des cas réels d’évolution. En particulier,
on analyse le scénario évolutif de la bactérie Rickettsia et des chromosomes sexuels X et Y chez
I’étre humain. Par rapport aux résultats des études précédentes, qui se sont basées sur une seule
séquence optimale, on obtient une meilleure caractérisation de ces scénarios évolutifs.

Tous les algorithmes développés sont implémentés en java, integrés & BAOBABLUNA, un
logiciel qui contient des outils pour manipuler des génomes et des inversions. Le téléchargement
et le tutoriel de BAOBABLUNA sont disponibles en ligne.

Un autre résultat de notre travail est un modéle pour calculer une mesure de similarité entre
deux génomes quand les duplications de génes sont acceptées. On a montré que notre approche,
qu’on appelle repetition-free longest common subsequence (RFLCS), est un probléeme NP-difficile,
comme les autres approches qui considérent aussi des génes dupliqués pour calculer une distance
génomique.

Mots-clés: Evolution ; réarrangements de génomes ; algorithmes ; tri par inversions

ABSTRACT

Calculating the reversal distance and finding one optimal sequence of reversals to transform
a genome into another are useful algorithmic tools to analyse real evolutionary scenarios. When
gene duplications are not allowed, there are polynomial algorithms to solve both problems.
However, the number of different optimal sorting sequences is usually huge and some additional
criteria should be taken in consideration in order to obtain a more accurate analysis.

One strategy is searching for sequences that respect some biological constraints, such as the
common intervals, which are the list of clusters of co-localised genes between the considered
genomes - an optimal sequence of reversals that does not break the common intervals may be
more realistic than one that does break. Another approach is to explore the whole universe of
sorting sequences, but, since this set may be too big to be directly interpreted, a model has been
proposed to group the sorting sequences into classes of equivalence, reducing thus the size of
the set to be handled. Nevertheless, the problem of finding an algorithm to direct generate the
classes without enumerating all sequences was stated to be open. One of the most important
results of our work is such an algorithm, and besides one representative, we are also able to
give the number of sequences in each equivalence class. Although the number of classes is much
smaller than the number of sorting sequences, it can also be too big.

We then propose the use of different biological constraints, such as the common intervals
(initially and progressively detected), to reduce the universe of sequences and classes, and show
how to apply these methods to analyze real cases in evolution. In particular, we analyze the
evolution of the Rickettsia bacterium, and of the sexual chromosomes X and Y in human. We
obtain a better characterization of the evolutionary scenarios of these genomes, with respect to
the results of previous studies, that were based on a single sorting sequence.

All the algorithms developed in this work are implemented, integrated to BAOBABLUNA, a
java framework to deal with genomes and reversals. Download and tutorial for BAOBABLUNA
are available on-line.

Another result of our work is a model to compute a measure of similarity between genomes
when duplications are allowed. Our approach, that is called repetition-free longest common
subsequence (RFLCS), was proven to lead to an NP-hard problem, as well as other approaches to
compute a genomic distance measure considering gene duplications.

Keywords: Evolution ; genome rearrangements ; algorithms ; sorting by reversals

VI

Résumé

Abstract

List of Figures

List of Tables

List of Algorithms
Chapter 1 Introduction

Chapter 2 Biological concepts

2.1 Genome
2.2 Genes and protein code . .
2.3 Gene duplication
2.4 Genome organization
2.5 Recombination
2.6 DNA replication

2.7 Genome rearrangements . .

Chapter 3 Sorting by reversals

Contents

3.1 Permutations, intervals and reversals

3.2 The breakpoint graph and the reversal distance

3.3 Safe and unsafe reversals . .

3.4 Sorting a signed permutation

3.5 The symmetry of sorting by reversals

3.6 Component-specific reversals

Chapter 4 Traces of sorting sequences of reversals

4.1 The space of all optimal sorting sequences

VII

VI

XI

XIII

XV

o o N o ot W

10
11

13
16
18
25
26
27
27

29

Contents

4.1.1 The symmetry of the space of sorting sequences 30
4.1.2 An algorithm to enumerate all sorting sequences 31
4.2 Traces e 33
4.2.1 The symmetry of traces L 35
4.2.2 Normal form of a trace L 35
4.2.3 Computing traces by enumerating all sorting sequences 36
4.3 An algorithm to directly enumerate the traces 38
4.3.1 The algorithm e 38
4.3.2 Theoretical complexity L L 40
4.4 Component-specific reversals and trace composition 43
4.5 Implementation and performance o oo 49
4.6 Final remarks L e 50
Chapter 5 Biological constraints and applications 53
5.1 Modeling traces with biological constraints 54
5.2 Common intervals L. 55
5.2.1 Initial detection of common intervals oL o7
5.2.2 Progressive detection of common intervalso o8
5.2.3 Theoretical complexity and experiments 61
5.2.4 Accepting interval breaks oo oL oL 64
5.3 Replication origin and terminus in prokaryotic circular chromosomes 65
5.3.1 Analysis of the Rickettsia bacterium 70
5.3.2 Evaluating the execution timeo oo 75
5.4 Stratification on evolution of sexual chromosomes 75
5.4.1 Model of evolution by strata 7
5.4.2 Algorithm for exploring the sequences that stratify a permutation 78
5.4.3 Analysis of theresults e 79
5.4.4 On the execution time of the strata variant 82
5.4.5 A deeper study of the human X and Y sexual chromosomes 82
5.4.5.1 Analysis of strata in extended permutations 83
5.4.5.2 Simulations to estimate the stratification likelihood 84

5.5 Symmetry versus asymmetry when applying constraints 88
5.6 Compatibility between constraints 89
5.7 Final remarks oL 90
Chapter 6 BAOBABLUNA 93
6.1 Optimization of memory use 94

6.1.1 The compressible sorted set, 94

6.1.2 Freezing operations L. 96
6.1.3 Performance L 96
6.2 Architecture L 97
6.3 Test e 100
6.4 Download and setup L 101
6.5 Final remarks L L 102
Chapter 7 Conclusions, limitations and perspectives 103
7.1 Mainresults L L 103
7.1.1 An algorithm to enumerate all the traces 103
7.1.2 Biological constraints L L e 104
7.1.3 Applications L L 106
7.1.3.1 Analysis of the human sexual chromosomes X and Y 106
7.1.3.2 Analysis of the Rickettsia bacterium 107
7.1.4 BAOBABLUNA e 107
7.2 Limitations oL e e 108
7.3 Future perspectives L e e 108
Appendix A BAOBABLUNA interface 111
A.1 The text representation for the breakpoint graph 111
A2 Download and setup 112
A.3 Running executable programso 112
A.3.1 baobab.exec.permutation.analyzeSignedPermutation. 113
A.3.2 baobab.exec.permutation.sort 114
A.3.3 baobab.exec.permutation.performReversals 115
A.3.4 baobab.exec.permutation.decomposeSignedPermutation 115
A.3.5 baobab.exec.trace.analyzeTraces 115
Appendix B Dealing with duplications 125
B.1 Repetition-free longest common subsequence 126
B.2 Hardness analysis e 126
B.2.1 MAX 2,3-SAT o e e 126
B.2.2 L—reducing MAX 2,3-SAT t0 RFLCS v v i .. 127
B.3 Experiments L e 130
B4 Final remarks L 130

Contents

Appendix C Extended abstract in French 131
C.1 Imtroduction oL e 131
C.2 Permutations, intervalles et inversions 132
C.3 Le tri par inversions et son espace de solutions 133

CBITraces . - v v v v v i i e e e e 133
C.3.2 Un algorithme pour énumérer directement les traces 135

C.4 Contraintes biologiques L e 136
C.5 Applications L 139
C.5.1 Analyse des chromosomes sexuels humains X et Y 139
C.5.2 Analyse des bactéries Rickettsia e e 140

C.6 BAOBABLUNA e 140
C.7 Conclusions et limitations L Lo 140
C.8 Perspectives L 141
Appendix D Article submitted to Genome Biology and Evolution 143

T W N =

D

10
11
12
13
14

15
16
17
18
19

20
21
22
23
24

25
26

27
28
29
30

List of Figures

Nucleotides and the organisation of a DNA molecule.
The protein synthesis. oo
Examples of chromosomes
The replication of a prokaryotic circular chromosome.
Examples of large scale rearrangements

Sorting a genome into another by reversalsonly
A transposition or a sequence of three reversals may produce the same rearrange-
ment in & EeNOIMEeo e e e e e
The breakpoint graph construction Lo
The effects of a reversal over the breakpoint graph
Unoriented components in a breakpoint graph
Eliminating unoriented components oL oL 0 o000 L
Merging super-hurdles Lo
Example of a fortress e
Safe and unsafe reversals L oL o L

Decomposing a 4-trace in its prefixes. L.
Constructing all the traces of a permutation
Processing a prefix of a trace when computing traces.
Distribution of the width of posets for random permutations
The breakpoint graph of a permutation with two oriented components.

Sorting sequences of reversals with respect to common intervals
Progressive perfect sorting sequence of reversals
Dealing with common interval breaks 0000 L.
A reversal with respect to the replication terminus of a circular chromosome . . .
A threshold on the terminus-symmetry rate determines whether a reversal is
terminus-symmetric or terminus-asymmetric.
The inferred position of the replication terminus in a circular chromosome.
Two equivalent optimal sequences of reversals sorting a circular permutation do
not have the same composition with respect to terminus-symmetric and terminus-
asymmetric reversals. oL oL Lo e
Example of external, terminus-symmetric, and terminus-asymmetric reversals
Phylogenetic tree of Rickettsia o ..
An optimal sequence of reversals to transform the ancestor R2 into Ricketsia felis
An alternative optimal sequence of reversals to transform the ancestor R2 into
Ricketsia felis e

© N O

10

14

16
19
21
22
23
24
24
25

39
41
41
44
46

o7
99
65
67

68
68

69
69
70
71

List of Figures

31

32
33
34

35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50

o1
52

53

54
95

56
o7

Sequence of reversals transforming human X into human Y chromosome 7
The structure of CompressibleSortedSet. 95
Effects of an insertion in CompressibleSortedSet 96
Comparison of memory use of standard and test versions of the implementation

of the algorithm to compute traces in BAOBABLUNA 98
The pattern of the architecture of executable programs in BAOBABLUNA. 100

Limiting the displacement of the replication terminus in a circular chromosome. . 109

The graphical and the text representations of a breakpoint graph 112
Get the help of a program in BAOBABLUNA. 113
Analyze a linear permutation L L0 113
Analyze a circular permutation Lo 114
Sort a linear permutation e e 114
Sort a circular permutationo L Lo Lo 115
Perform two subsequent reversals on a linear permutation 116
Decompose the breakpoint graph of a linear permutation 117
Analyze traces of a linear permutation 118
Analyze traces of a linear permutation 118
Analyze traces of a linear permutation by trace composition. 119
Analyze perfect traces of a linear permutation 120
Analyze progressive perfect subtraces of a linear permutation 120
Apply the terminus-symmetry constraint for searching subtraces of a circular per-

mutation L L e e e 121
Analyze strata-induced subtraces of a linear permutation 122
Apply the terminus-symmetry constraint together with the progressive detection

of common intervals for searching subtraces of a circular permutation 122
Incompatibility between strata and progressive detection of common intervals

when analyzing subtraces of a linear permutation 123
An instance of MAX 2,3-SAT with one optimal solution. 127
L—reduction of MAX 2,3-SAT(V,C) to RFLCS(Z,y) 128
La decomposition d’une 4-trace dans ses préfixes. 136
La construction de toutes les traces d’une permutation 137

XII

w

0 ~J O Ot i

10
11

12
13

14
15
16
17
18
19
20

21
22

23

24

List of Tables

The effects of a reversal that is part of an optimal sorting sequence in a breakpoint

graph. . . oL 25
The 28 optimal sequences of reversals sorting (—3,2,1,—4). 32
Examples of permutations, their sizes, their reversal distances and their number

of optimal sorting sequences. L. 33
The two equivalence classes of optimal sequences of reversals sorting (—3,2,1,—4). 33
Non-equivalent sequences composed by the same reversals. 34
The traces of optimal sequences of reversals sorting a permutation. 46

The traces of optimal sequences of reversals sorting the components of a permutation. 47
Composing the traces that sort a permutation by multiplying the traces that sort

its components. L.l e e 49
Execution time of searching all sorting sequences versus searching traces 50
A 2-tuple representing a progressive perfect subtrace. 61
Comparison of the results of computing traces, perfect traces and progressive

perfect subtraces L L L 63
Traces of optimal sequences sorting Ricketsia felis into the ancestor R2 72
Progressive perfect subtraces of optimal sequences sorting Ricketsia felis into the

ancestor R2 L L e e 73
Subtraces of optimal sequences sorting Ricketsia felis into the ancestor R2 with a

bounded number of external and terminus-asymmetric reversals 74

Progressive perfect subtraces of optimal sequences sorting Ricketsia felis into the
ancestor R2 with a bounded number of external and terminus-asymmetric reversals 74
Comparison of the results of computing traces, progressive perfect subtraces and
subtraces with a bounded number of external and terminus-asymmetric reversals 76
Traces of sequences of reversals transforming human X into human Y chromosome 81
A subtrace of sorting sequences that produce a stratification on the X chromosome. 81
A subtrace of sorting sequences that produce an alternative stratification on the

X chromosome. e e e e e e e e 82
Comparison of the results of computing traces and strata-induced subtraces . .. 82
Homologous markers in human X and Y chromosomes 85
Analysis of all optimal sequences of reversals that sort the human X chromosome

into Y, with respect to all possible stratifications 87
Comparison of the execution time of standard and test versions of the implemen-

tation of the algorithm to compute traces in BAOBABLUNA 99
Test cases used to assure the quality of BAOBABLUNA. 101

XIII

List of Tables

25
26

27

28

Les 28 séquences d’inversion optimales qui trient la permutation (—3,2,1,—4). . 134
Exemples de permutations, leurs tailles, leurs distances d’inversion et leurs nombre
de séquences optimales. L L e 134
Les deux classes d’équivalence qui contiennent les séquences optimales pour trier
A= (=3,2,1,—4). . . e 134
Le temps d’exécution de chercher toutes les séquences d’inversions versus chercher
toutes les traces L L L e 137

XIV

U W N

D

List of Algorithms

Sorting a signed permutation L Lo 0oL

Enumerating all optimal sorting sequences for a permutation
Adding an element p; to a normal form f of an (i — 1)—trace: f+p;
Enumerating all optimal sorting sequences and computing traces
Enumerating all the traces of a signed permutation

Enumerating all the progressive perfect subtraces of two signed permutations
Enumerating all the strata-induced subtraces of two signed permutations and a
given k—strata in the origin permutationo,

XV

List of Algorithms

XVI

Chapter 1

Introduction

This work concerns the algorithmics of genome rearrangements, and is focused on the comparison
of two different genomes, mostly considering that the differences observed between them are due

to reversals.

Genomes are subject to constant mutations during evolution. Those mutations can be of
small scale, such as single nucleotide polymorphisms (SNPs), or of large scale, such as reversals,
insertions, deletions, transpositions, fusions and fissions of chromosomes. Reversals are among
the events more frequently observed, specially in the evolution of prokaryotes. In eukaryotes,
reversals have also been observed. As an example, current theories claim that reversals have
a major role to explain the evolution of sexual chromosomes in mammals and in other organ-
isms [40, 55, 60].

One of the most studied problems in a computational approach to pairwise comparative
genomics is to determine the rearrangements that have transformed one genome into the other.
When the accepted events are restricted to reversals, the genomes are assumed to be free of
gene duplications and the orientation of the genes is taken into account, there are polynomial
algorithms to calculate the reversal distance between two genomes (that is, the minimum number
of reversals required to transform a genome into another) and to determine an optimal sequence of
reversals that transforms one genome into the other [32, 33]. Several studies propose algorithms
that give one optimal sequence of reversals [4, 11, 26, 31, 63|, but there may be a huge
number of such sequences. As we will see later in this manuscript, when comparing two short
genomes that share only twelve homologous markers, for example, the number of optimal sorting

sequences can be greater than 30,000, and it can be insufficient when attempting to give a

Chapter 1. Introduction

biological interpretation to know only one among them.

In order to obtain a more accurate analysis, some additional criteria should be taken in con-
sideration. One strategy is searching for sequences that respect some biological constraints, such
as common intervals, which are the list of clusters of co-localised genes between the considered
genomes - an optimal sequence of reversals that does not break the common intervals may be
more realistic than one that does break them [26]. Another approach, proposed by Siepel [59],
is a method to enumerate all optimal sorting sequences. This is however almost as useless as
providing only one sequence, because often the sequences are so many that the whole set cannot
be presented (when it can be computed). Bergeron et al. [9] then provided a way to group the
parsimonious sequences into equivalence classes. However, no algorithmic study was performed,
and in particular the problem of giving one sequence in each class without enumerating all the
sequences was mentioned open.

One of the most important results of our work is a solution to this problem. We propose
an algorithm that gives one optimal sequence of reversals that sorts a genome into another per
class of equivalence, and counts the number of sequences in each class [18]. The number of
classes is much smaller than the number of optimal sequences, but it may still be too big to be
interpreted. Thus, to reduce the number of classes even more, we started to put both strategies
together, that is, generating only the classes in which there are sequences that respect some
biological constraints, such as the common intervals (initially and progressively detected) [17,
18], the composition of the sequence of reversals with respect to the origin and the terminus of the
replication (specific to circular prokaryotic genomes), and the stratification of a genome (specific
to the X and Y chromosomes evolution). We analyzed qualitatively how the constraints may
affect the chronology of the reversals, showing that some of these constraints lead to symmetric
(when the results of sorting a genome A into a genome B can be obtained from the results of
sorting B into A) and others lead to asymmetric approaches. In addition, a set of constraints
can be applied together, under the condition that they are compatible.

We then applied our methods to the analysis of real cases in evolution. In the study of
evolution of the human chromosomes X and Y, reversals are believed to have a major role and
to have happened in a special order, creating the so called strata on the X chromosome [40, 55,

60]. Using strata as constraints, we were able to generate the classes in which the sequences

were in agreement with the given strata. With this method we could test different hypotheses
of stratification [18, 41]. In the study of prokaryotic chromosomes, in which it was observed
that reversals are more likely to happen around the replication terminus, we used a constraint
on the minimum number of such reversals, combining this method with the progressive detection
of common intervals in the analysis of the Rickettsia bacterium [47, 48], obtaining a better
characterization of its evolutionary scenario than previous studies [13].

All the algorithms developed in this work were implemented in an object oriented paradigm,
integrated to the software BAOBABLUNA [16], a java framework to deal with genomes and rever-
sals, that is available on-line. In order to be able to deal with the huge amount of data when
constructing the classes of equivalent sorting sequences, we developed a java structure that is
able to efficiently compress and store the equivalence classes in a sorted set during the construc-
tion. We compared the performance of this structure with a java standard implementation of a
sorted set, showing that we are able to save memory without losing in the execution time. With
BAOBABLUNA, we run experiments of all the variants of our algorithm, showing the gain in the
execution time when the biological constraints are applied.

This manuscript is organized as follows. In Chapter 2, we introduce the biological concepts
that are required to understand our work and in Chapter 3, we talk about sorting by reversals
without gene duplications. Chapters 4 and 5 contain our main results, that are an algorithm
that gives a representation of the space of all solutions to the sorting by reversals problem, how
to take biological constraints in consideration and the application of this method to study real
cases in evolution. In Chapter 6 we talk about BAOBABLUNA [16], a Java framework with the
implementations of all algorithms presented in Chapters 4 and 5. Finally, Chapter 7 contains a
summary of the results and future perspectives to our work.

The interface of the executable programs in BAOBABLUNA is described in Appendix A. In
Appendix B, we describe another result of our work, which is a model to compute a measure
of similarity between genomes when duplications are allowed. Our approach, that is called
repetition-free longest common subsequence (RFLCS) [1], was proven to lead to an NP-hard
problem, as well as other approaches to compare two genomes considering gene duplications [14,
15, 20, 57|. In Appendix C we give an extended abstract of our work in French. And Appendix D

contains the study Footprints of inversions at present and past pseudoautosomal boundaries in

Chapter 1. Introduction

human sex chromosomes that we developed in collaboration with Lemaitre et al. [41]. This work

concerns the evolution of the human sexual chromosomes X and Y and was recently submitted

to the journal Genome Biology and Evolution.

Chapter 2

Biological concepts

Summary

2.1 GEeNOomE . . . v i i it it e
2.2 Genesand proteincode Lol i d e e e e
2.3 Geneduplication L L s e e e e e

2.4 Genome organization v v v i e e e et e e e e

® 00 g o ot

2.5 Recombination . . . ¢ ¢ v v v v v v v v v o e et e ot e ettt et
2.6 DNA replication ittt it 10

2.7 Genome rearrangementsS« s . . e e e 0 e b e e e e e 0. 11

In this chapter, we present some basic concepts in molecular biology [65] that are important

to understand our work.

2.1 GENOME

A genome is the hereditary information of an organism and is encoded in a nucleic acid molecule
called DeoxyriboNucleic Acid (DNA)?.

Many physical and chemical properties of the DNA are known. Simply put, we can describe
it as a linear macromolecule composed by smaller molecules, the nucleotides. The nucleotides
are chemically very similar, except by one of its components, which is a nitrogenous base (often

simply called base). There are four different types of bases, which are adenine (A), guanine

'In some Viruses, the genome is encoded as a simpler kind of molecule, the RiboNucleic Acid (RNA), which
is a single strand composed by the nucleotides that carry the bases adenine (A), cytosine (C), guanine (G) and
uracil (U).

Chapter 2. Biological concepts

(G), chemically classified as purines, and cytosine (C), thymine (T), chemically classified as
pyrimidines. Thus, there are also four different types of nucleotides, according to the base they

carry.

nucleotide

base
A,C,GorT

Three
hydrogen

DNA
double
stranded
molecule

hydrogen
bhonds

Figure 1: Nucleotides and the organisation of a DNA molecule.

In a DNA molecule, the nucleotides are organized in two complementary helicoidal strands,
respecting the base-pairing A-T and G-C. The two extremities of each DNA strand are identified
by the symbols 5’ and 3’. Then, to each strand is given a direction that goes from the 5’
extremity to the 3’ extremity. Moreover, in a DNA molecule, the arrangement of its strands is
antiparallel, that is, the direction of the nucleotides in one strand is opposite to the direction of
the nucleotides in the other strand (figure 1). Due to this property, one strand is said to be the
reverse complement of the other one. The length of a DNA molecule is measured in base pairs

(bps, respectively Kbps, Mbps, Gbps).

2.2 (GENES AND PROTEIN CODE

A genome is a code with all the instructions to synthesize the proteins that participate in the
development and functioning of an organism. We call gene a portion of the genome that codes
for a protein. During protein synthesis, one strand of the DNA molecule is transcripted as a
RiboNucleic Acid (RNA), that is, as a single stranded molecule composed by nucleotides that
carry the same purines (adenine (A) and guanine (G)), the pyrimidine cytosine (C), and, instead

of thymine, the pyrimidine uracil (U). Then, each sequence of three nucleotides (codon) of this

6

2.3. Gene duplication

RNA molecule codes for? an amino-acid, which is the basic molecule of a protein.

There are 64 different codons (because each one of the three positions of a codon can be
occupied by one of the four types of bases, A, C, G or U) that can code for 20 different types
of amino-acids. This means that there is a redundancy in the amino-acid coding, that is, some
amino-acids are coded by more than one codon. As an example, the aminoacid Phenylalanine
(Phe or F) is coded by the codons UUU and UUC, while the aminoacid Tryptophan (Trp or W)

is coded only by the codon UGG. Figure 2 illustrates the process of protein synthesis.

DNA — —
gene gene \ gene
DNA strand 3° 5'
ACCAAACC@A@T
| 9 Y™ PN UL PN N 9 N
|TRANS(:RIPTION |
l o N N VY N N " AN
UGGUUUGGIE/IUMA
mRNA 5' 3
Codon
|TRAN5LATION | l l l l

I
Protein Phe

Amino acids

Figure 2: The protein synthesis.

2.3 GENE DUPLICATION

Gene duplication is any duplication of a region of DNA that contains a gene. The two genes that
exist after a duplication event are called paralogs and usually code for proteins with different
functions. By contrast, genes that code for proteins with similar functions but exist in differ-
ent species are called orthologs, and are inherited from the common ancestral of these species.

Paralogs and orthologs are homologous genes. In biological research it is important, but often

2In fact, the synthesis process is more complex, and some parts of the RNA are spliced out and not translated.
A complete description of protein synthesis can be obtained in [65].

7

Chapter 2. Biological concepts

difficult, to differentiate paralogs and orthologs.

2.4 GENOME ORGANIZATION

DNA is present in the cells of an organism, distributed in one or more chromosomes. In prokary-
otes, which are organisms that lack a cell nucleus (such as bacteria or archeae), the genome
is usually composed by a single circular chromosome (figure 3 (A)), whose size varies at least
from 160 Kbps (the bacterium Candidatus Carsonella ruddii [46]) to 13 Mbps (the bacterium
Sorangium cellulosum [54, 58]).

Organisms that have a cell nucleus, the eukaryotes (animals, plants, fungi, and protists),
usually have a genome more complex, composed of a group of linear chromosomes. In eukaryotes,
the chromosomes are located inside the cell nucleus and a genome can be as small as 20 Mbps
(Saccharomyces cerevisiae [29]) or as large as 670 Gbps (Amoeba dubia [52]). The relationship
between genome size and organism complexity is not clear. The human genome (Homo sapiens),
for instance, has only 3.25 Gbps, which means that Amoeba dubia, an unicellular organism, has
a genome over 200 times longer than the human genome.

Moreover, eukaryotes generally have a genome less dense in genes than prokaryotes, but the
relationship between genome size and the number of genes is also not clear. The bacterium
Escherichia coli has 4,243 genes in its genome of 4.64 Mbps, while the plant Arabidopsis thaliana
has a genome of 119 Mbps and 28,159 genes, and it is estimated that the human genome may
have about 26,500 genes in its 3.25 Gbps.

2.5 RECOMBINATION

Eukaryotes usually have a fixed number of copies of each chromosome, and the number of homol-
ogous sets of chromosomes in the cell of an organism is said to be its ploidy (all the copies of the
same chromosome are said to be homologous chromosomes). When all the cells of an organism
have only one copy of each chromosome, the organism is said to be haploid.

In general, the cells of organisms that have a sexual reproduction are diploid, containing one

set of chromosomes from each parent. In other words, most of the cells in a diploid organism

8

2.5. Recombination

(A)

)}

(B)
1 2 3 4 5§ 6 7 11

8 9 10 11 12

HITTITG

13 14 15 16 17 18 19 20 21 22 X

Figure 3: A. A prokaryotic circular chromosome. B. The 24 linear chromosomes of the human species
(Homo sapiens) are separated in two groups, the autosomes, numbered from 1 to 22, and the sex-
determining, which are the chromosomes X and Y.
contain pairs of homologous chromosomes. Usually, one of these pairs is composed by the sez-
determining chromosomes (identified by X and Y in humans and other mammals) and the others
are pairs of autosomes, which are homologous non sex-determining chromosomes. Figure 3 (B)
illustrates the chromosomes of the human species.

The composition of the sex-determining pair of chromosomes is different in males and females.
In human, females have a pair with two copies of the X chromosome, and males have a pair with
two different chromosomes X and Y, but there are also other possible patterns. In birds, for
instance, males have a pair with two copies of the same chromosome, and females have a pair
with two different chromosomes. The gametes (male or female germ cells) of a diploid organism
are haploid, that is, they have only one set of autosomes and one sex-determining chromosome.

The production of gametes in a diploid organism occurs when a specific kind of its diploid
cells divides by a process called meiosis. The result of the meiosis of a diploid cell are four
haploid cells, and one or more among these haploid cells originate the gametes. During meiosis,
a phenomenon may happen that is called chromosomal crossing over, by which a pair of
homologous autosomes genetically recombine, exchanging sections of their DNA.

Crossing over and genetic recombination also happen between homologous sex-determining
chromosomes (such as the pair XX in mammalian females) and even between homologous por-
tions of non-homologous sex-determining chromosomes. It has been observed, for instance, that

although human chromosomes X and Y are very different, they have two homologous regions

Chapter 2. Biological concepts

at their extremities in which genetic recombination occurs. These regions are called pseudo-

autosomal regions.

2.6 DNA REPLICATION

DNA replication is the process of copying a double-stranded DNA molecule to form two double-
stranded molecules. It occurs when a cell divides itself to create two copies with the same DNA
content as the original cell (as in asexual reproduction of unicellular organisms, or in the mitosis
of an eukaryotic cell). As each DNA strand is the reverse complement of the other, both strands
can serve as templates for copying the opposite strand. Thus, during DNA replication, each one
of the strands of the original molecule is preserved in its entirety and is used as a template for
the assembly of a new strand.

The process of replication happens in different ways, depending on the organism and the
molecule type. In particular, the chromosome of a prokaryotic organism, which is generally cir-
cular, has a bidirectional replication process. In a specific position of the chromosome, identified
as the replication origin, the replication starts in both directions. The simultaneous replication
processes will then finish in the opposite side of the molecule, in a position identified as the

replication terminus (see Figure 4).

ori

Ter

Figure 4: The replication of a prokaryotic circular chromosome.

In eukaryotes the replication process is in general much more complicated, with several repli-

10

2.7. Genome rearrangements

cation origins and terminuses through the chromosomes.

2.7 GENOME REARRANGEMENTS

Genomes are not static, but are subject to continuous mutations during the cellular processes.
These mutations can be of different types and scales. Events such as single nucleotide poly-
morphisms (SNPs), that affect only one nucleotide at a time, are said to be small scale events,
and are more frequent than large scale events [53]. The main known rearrangements or large
scale events are reversals of large portions of chromosomes, insertions of new genes (usually due
to duplications or horizontal transfer between species), deletions or loss of genes, transpositions
of DNA fragments within a chromosome, fusions and fissions of chromosomes, translocations
of DNA fragments between chromosomes. Some examples of observed rearrangements between

current species are represented in Figure 5 [13, 35].

(A) (B)

o o
T Ter 2 2a28
Rickettsia prowazekii Rickettsia typhi Human Chimp

Figure 5: A. The most important difference between the circular chromosomes of the bacteria Rickettsia
prowazekii and Rickettsia typhi [13] is very likely to be due to a reversal. B. The human chromosome 2
seems to be a fusion of chimpanzee’s chromosomes 2A and 2B [35].

Reversals are among the rearrangement events more frequently observed in the evolution
of organisms, specially prokaryotes. Most of the existing differences between six species of the
Rickettsia bacteria can be explained by reversals [13, 17]. In eukaryotes, reversals have also been
observed [44] and current theories claim that reversals may also have an important role in the
evolution of sex-determining chromosomes [40, 41, 55, 60]. The rates of different rearrangement

events in whole genomes of several eukaryotic species were studied in [43], showing that reversals

11

Chapter 2. Biological concepts

are considerably frequent. Even if these and other examples do not prove that reversals happen
in practice, they are well accepted as indices of the occurrence of reversals.

In comparative genome studies, genomes are compared in order to determine the rearrange-
ments that may have happened between them. Our work is in the algorithmics of comparative
genomics, and is mostly focused on the problem of sorting one genome into another when gene
duplications are not allowed and the rearrangement events are restricted to reversals. Observe
that, in this case, only unichromosomal genomes can be analyzed, thus this approach is more
adequate to analyze the evolutionary scenario of prokaryotes and of some special cases in eu-
karyotes.

In the next chapter we will describe in detail the problem we are interested in, that is called

sorting by reversals.

12

Chapter 3

Sorting by reversals

Summary
3.1 Permutations, intervals and reversals 16
3.2 The breakpoint graph and the reversal distance 18
3.3 Safe and unsafereversals 00000, 25
3.4 Sorting a signed permutation 000000, 26
3.5 The symmetry of sorting by reversals 27
3.6 Component-specificreversals 0.0 27

The classical algorithmic problems in pairwise comparative genomics are to compute the
rearrangement distance between two genomes [33], that correspond to the minimum number of
rearrangement events that are required to transform one genome into the other, and to determine
an optimal sequence of events to transform one genome into the other. These problems have
several variations, according to the events that may be considered [63].

Our research is mostly focused on rearrangement problems restricted to reversal events and,
in this chapter, we talk about sorting one unichromosomal genome into another by reversals
when gene duplications and insertions are not allowed. Observe that we also assume that the
order of the genes is known in both genomes, which often is not true in practice [66]. One of the
first studies that proposed algorithms to compute the reversal distance between two genomes was
developed by Kececioglu and Sankoff [38], with an approach that does not take into account the
orientation of the genes. Later this approach, called unsigned sorting by reversals, was proven

to lead to an NP-hard problem [22]. We worked on a different approach, called signed sorting

13

Chapter 3. Sorting by reversals

by reversals, or simply sorting by reversals, in which the orientation of the genes is taken into
account. Kececioglu and Sankoff [38] had already observed that some aspects of signed sorting by
reversals were easier to analyze, and, indeed, this approach can be solved in polynomial time [32,
33|, as we will describe in this chapter.

Despite the simplifications (not considering duplications or insertions and assuming that the
order of the genes is known in both genomes) mentioned above, the sorting by reversals problem
is very interesting. From the biological point of view, as we said before, reversals are frequently
observed, specially in prokaryotes. And reversals are also interesting from the algorithmic point
of view. First we note that it is always possible to sort a genome into another by reversals. In
the worst case, we need two reversals to put each marker of the first genome in the position
that it occupies in the second genome (one reversal to put the marker in the proper position
and eventually a second reversal to inverse its orientation). Thus, if the two considered genomes
has n homologous markers, in the worst case we need 2n reversals to sort one genome into the
other. We will see later in this chapter that in general at most n reversals are sufficient to sort

a genome into another and a fictitious example is given in Figure 6.

3 4
!]

A iﬁ:iiié'éi s DPE -3 2 1-2 A

1 2
—t—— 0y I DaaaE -3 1-1-2

3L 1 1 =]15*
5,::_1 — - 13/ »daE o4 1 -4 3 -2
3] >|;|< 15¢
5:-1:;? , 13 R : B 1 2 -3 4
B :::?:? T, o= :Z ey s D 1 2 3 4 B

Figure 6: Sorting genome A into genome B by reversals only. Homologous markers (usually genes) are
identified by the same numbers and colours. Signs indicate the DNA strand the markers lie on.

Computing the reversal distance, that is, the minimum number of reversals that are required
to transform one genome into the other, and finding an optimal sorting sequence can be solved in

polynomial time [32, 33]. These two problems have been the topic of several works. The fastest

14

algorithm to compute the distance takes O(n) time [4] and the fastest way to find an optimal
sorting sequence is subquadratic [11, 31, 63|. It is possible that this mathematical notion of
reversal distance and the method of searching optimal sequences can underestimate the actual
number of steps that occurred biologically. However, the solutions of these two problems are still
valuable tools that help to analyze and to understand evolutionary scenarios. Currently, there
are at least two available softwares to solve these problems. One is the package GRAPPA3, that is
discussed in more detail in [45] and contains the fastest algorithm to compute the reversal distance
(mentioned above). The other is the software GRIMM*, that is described in [64] and contains one
of the most used programs to sort a genome into another by reversals. These programs were
used in particular by Ross et al. [55] in the analysis of the human sexual chromosomes X and Y

and by Blanc et al. [13] in the analysis of the Rickettsia bacteria.

Observe that with reversals we can simulate a transposition, that is another possible re-
arrangement event in unichromosomal genomes. A transposition is said to happen when two
consecutive markers of a genome exchange their positions. It is always possible to produce the
same result as a transposition with a sequence of three reversals (see Figure 7). Thus a sequence
of m transpositions can always be transformed in a sequence of 3m reversals. However, this
does not mean that there is a clear relation between the reversal distance and the transposition
distance. Eventually a sequence of m transpositions can be replaced by a sequence with less than
3m reversals. Moreover, although the reversal distance can be obtained in polynomial time, the
complexity of computing the transposition distance is still an open problem in the algorithmics

of genome rearrangements [5].

In the rest of this chapter we will introduce our notation and explain the classical approach

of Hannenhali and Pevzner [32, 33, 53| for the sorting by reversals problem.

3The package GRAPPA (Genome Rearrangements Analysis under Parsimony and other Phylogenetic Algorithms)
contains several programs to deal with genome rearrangements and can be downloaded at http://www.cs.unm.
edu/"moret/GRAPPA/.

“The software GRIMM contains also algorithms for multichromosomal genome rearrangements and is available
online at http://grimm.ucsd.edu/GRIMM/.

15

Chapter 3. Sorting by reversals

one transposition OR three reversals
A

ED] £ J S OB OB (OB
@@y (oo (OG>
ER Y £ EDERTEn » X INEDY - (S
EDJE & D) OB OB O

Figure 7: A transposition or a sequence of three reversals may produce the same rearrangement in a
genome. Observe that the three reversals can be applied in different orders.

3.1 PERMUTATIONS, INTERVALS AND REVERSALS

We represent the studied genomes by the list of homologous markers (usually genes or blocks
of contiguous genes) between them. These homologous genomic markers are represented by the
integers 1,2,...,n, with a plus or minus sign to indicate the strand they lie on. The order and
orientation of the markers of one genome in relation to the other is represented by a signed
permutation T = (71, T2, ..., Tp—1,7p) of size n over {—n,...,—1,1,... n}, such that, for each
value 7 from 1 to n, either ¢ or —¢ is mandatorily represented, but not both. The identity
permutation (1,2,3,...,n) is denoted by Z,.

A subset of numbers p C {1,2,...,n — 1,n} is said to be an interval of a permutation 7 if
there exist 7,7 € {1,...,n}, 1 <i < j <n,such that p = {|m|, |m41],...,|7j=1], |7;|}. Given a
permutation 7 and an interval p of m, we can apply a reversal on the interval p of 7, that is, the
operation which reverses the order and flips the signs of the elements of p, denoted by wop. If 7 =

(71'1,7(2,. ey T— 1y TGy Ty 1y e - ,7rj_1,7rj,7rj+1, . ,7rn_1,7rn) and p = {‘7(1| ‘7(1'+1|, ey "/Tj_1|, "/Tj‘},

T O p=(T1,T2, oy Wil =Ty =M1y e ey =i 1y —Tis Tjls e oo s Tn1; Tn)-
J J

For example, with the permutation 7 = (—3,2,1, —4) and the interval p = {1,2,4} we have
mop=(-3,4,—1,—2). Due to this, an interval p can also be used to denote a reversal.

We say that a permutation is linear when it represents a linear chromosome, or circular when
it represents a circular chromosome. When a permutation © = (71,72, ..., Th—1,7,) is circular,
the circular permutation 7@ = (—m,, —7p_1,..., —72, —71) (generated by a reversal over all values

of 7) and all circular permutations obtained by a shift in 7 or 7 are equivalent to 7. A shift of i

16

3.1. Permutations, intervals and reversals

elements in a circular permutation m = (71,7, ..., Tn—i, Tn—it1, Tn—i+2,- -+ Tn_1,Tpn) transfers
the last ¢ elements of 7 to the beginning of w. This operation generates the circular permutation
(Tm—ib 1y Tt 2y -« o s Tpe—1, Ty T, T2, - - ., Tp—i). Observe, for example, that the circular permu-
tations m = (—3,2,1,—4) and 7’ = (—1, —2,3,4) are equivalent (we can obtain 7’ by applying a
shift of 3 on 7).

For a given permutation m = (71,72, ..., Th—1,7Ty), we say that there is a point between each
pair of consecutive values m; and m; 41 in m. In addition, if 7 is circular, there is one additional
point between 7, and ;. If 7 is linear, there are two additional points, one before m; and the
other after m,. We denote by pts(m) the number of points in a permutation 7. Thus, if 7 is
circular, then pts(m) = n. Otherwise 7 is linear and pts(m) = n + 1.

When we analyze a permutation 7 = (71,72, ..., T—1, T,) With respect to another permuta-
tion 7, each point in 7 can be an adjacency or a breakpoint. We say that a pair of consecutive
values (m;,m;+1) in m is an adjacency between m and 7p when either the values in the pair
(7, mi41) or the values in the pair (—m;41, —7;) are consecutive in mp. Moreover, if the per-
mutations are circular, we assume that 7, is the last value of 7%, and the pair (m,,7) is an
adjacency when 7 is the first value in 7. If the permutations are linear, we have an adjacency
before 7y if 7y is also the first value in 77 and an adjacency after 7, if m, is also the last value of
7. All points that are not adjacencies between 7 and 7 are called breakpoints. We denote by
adj(m) the number of adjacencies and by brp(m) the number of breakpoints in a permutation 7.
It is easy to see that brp(w) = pts(mw) — adj(w). Observe that, if 7 is sorted, that is, 7 = 7, then
7 has only adjacencies and no breakpoints, and, if 7 # 7p, then 7 has at least one breakpoint.

A sequence or i—sequence of reversals p1ps ... p; is valid for a permutation 7 if p; is an interval
of 7, py is an interval of 7 o p1, p3 is an interval of (7 o p1) o po, and so on. If pyps...p; is a
valid i—sequence of reversals for a permutation 7, then 7 o pyps...p; denotes the consecutive
application of the reversals pi, po, ...p; in the order in which they appear. We say that an
i—sequence of reversals p1 ... p; sorts a permutation 7 into a permutation np if mopy ... p; = 7.

The length of a shortest sequence of reversals sorting a permutation 7 into mp is called

the reversal distance of m and mp, and is denoted by d(w, 7). Let s = pip2...p; be a valid

SIf the permutations are circular, without loss of generality, we can assume that the last value in 7 and 77 are
the same; if it is not the case, we take as 7 an equivalent circular permutation with this characteristic.

17

Chapter 3. Sorting by reversals

i—sequence of reversals for a permutation 7. If d(w o s,7p) = d(mw, 7r) — i, then s is said to
be an optimal i—sequence. Moreover, if s is an optimal i—sequence and i = d(m,7r), then s
is simply called an optimal sorting sequence for m and mp. We also define the k—prefix of an
optimal sorting sequence s as the sequence composed by the first k reversals of s. Observe that
if s’ is a k—prefix of an optimal sequence s sorting 7 into 7y, then d(7 o &', 7p) = d(m, 7p) — k,
that is, s’ is an optimal k—sequence for 7 and . For example, if we consider two linear permu-
tations m = (—3,2,1,—4) and mp = Z4, we have d(m,mr) = 4 and one optimal sorting sequence
is {1,2,4}{1,3,4}{2,3,4}{3}, whose 1—, 2— and 3—prefixes are {1,2,4}, {1,2,4}{1,3,4} and
{1,2,4}{1,3,4}{2,3,4}.

Henceforth we will generally use simply the term sequence or i—sequence to refer to an
optimal sequence or optimal i—sequence of reversals. Moreover, for the purposes of our work,
the initial and the target permutations m and 7 are either both linear, or both circular. Without
loss of generality, we often omit the target permutation 7p. In this case, mp corresponds to the
identity permutation Z,, = (1,2,3,...,n), where n is the size of the initial permutation 7, and

the notation d(7) is equivalent to d(m,Zp,).

3.2 THE BREAKPOINT GRAPH AND THE REVERSAL DISTANCE

As mentioned, given a permutation 7, calculating d(7r) and finding one optimal sequence of
reversals sorting m can be computed in polynomial time. The classical approach for analyzing
these two problems was developed by Hannenhalli and Pevzner [8, 32, 33, 53] and is based on
a special structure called the breakpoint graph, whose edges can be black or gray.

For a given permutation © = (my, 79, ..., 1, T), we construct the breakpoint graph of 7
as follows. If 7 is linear, we may add the values 0 and n 4 1, that represent the extremities of
the chromosome, obtaining the permutation 7’ = (0,71, 72, ..., Tp—1, 7T, n + 1). If 7 is circular
(without loss of generality we assume 7, = n), we may add only the value 0, obtaining the
permutation «’ = (0,71, 72,...,m,_1,n). Then we may link each pair of consecutive values by
a horizontal black edge (each black edge represents a point in the permutation). Lastly, we may
link with gray edges the first extremity of the black edge that appears after zero or a positive

value i (analogously the last extremity of the black edge that appears before a negative value —1)

18

3.2. The breakpoint graph and the reversal distance

with the last extremity of the black edge that appears before a positive value i + 1 (analogously
the first extremity of the black edge that appears after a negative value —(i + 1)). Thus, each
gray edge links extremities of black edges. At the end, we have a graph with a collection of
cycles, and in each cycle black and gray edges alternate. When a cycle contains only one black
and one gray edge, it covers an adjacency and is called trivial cycle. The cycles that contain four
or more edges cover at least two breakpoints and are called long cycles. The construction of the

breakpoint graph of a linear permutation is illustrated in Figure 8 (A).
(A)

3 +2 +1 -4 0 < 36730 41— -4 — +5
0—-3—+2—+1—-4—+5 omw
06 -3 — 42 v 41 — -4 — 45 omw
0 3—32 = 41v— -4—45 | 0 m +5

(B) (C)
05T 135 44 05 +1 5 4252 4352 414 4 45

Figure 8: (A) The construction of the breakpoint graph for the linear permutation m = (—3,2,1,—4) is
done by the following steps: 1- add the values 0 and +5, that represent the extremities of the chromosome;
2- link each pair of consecutive values by a black edge. 3- link with gray edges the first extremity of the
black edge that appears after zero or a positive value i (analogously the last extremity of the black edge
that appears before a negative value —i) with the last extremity of the black edge that appears before a
positive value i + 1 (analogously the first extremity of the black edge that appears after a negative value
—(i 4 1)). The obtained breakpoint graph has one long cycle with five breakpoints and no adjacencies.
(B) The breakpoint graph for the circular permutation (—3,2,1, —4), which is equivalent to the circular
permutation (—1,—2,3,4). In this case, in the first step we may add only the value O in the beginning of
(—1,-2,3,4), henceforth the procedure is identical. This graph has two cycles: one trivial cycle (which
correspond to the adjacency between 8 and 4) and one long cycle with three breakpoints. (C) The breakpoint
graph for the linear permutation T, = (1,2,3,4). This graph has five trivial cycles (each trivial cycle is
an adjacency) and no breakpoints.

Observe that, for a given permutation =, the breakpoint graph is different depending on
whether 7 is linear or circular, as we can see comparing the graph for the linear permutation
(—3,2,1,—4) and the circular permutation (—3,2,1,—4) (Figure 8 (A) and (B)). However, they

can be analyzed exactly in the same way, that is, the only difference between circular and linear

19

Chapter 3. Sorting by reversals

permutation analyses is the breakpoint graph construction. Thus, without loss of generality,
henceforth we will often talk about breakpoint graphs, without specifying whether the corre-
sponding permutations are linear or circular. To denote the breakpoint graph of a permutation
m, we will use the same symbol 7.

If a permutation 7 is sorted, it has only adjacencies, and the resulting breakpoint graph is
a collection of pts(m) trivial cycles (see Figure 8 (C)). A breakpoint graph that has only trivial
cycles is said to be sorted. Since a long cycle contains at least two breakpoints, if 7 is unsorted,
then 7 has at most pts(m) — 1 cycles. This indicates that, in order to sort a permutation, we may
induce an increase of the number of cycles in its corresponding breakpoint graph. The number
of cycles in the breakpoint graph of a permutation 7 is denoted by cyc(n).

Hannenhalli and Pevzner [32, 33, 53] described the effects of a reversal p over a breakpoint
graph 7. The authors demonstrated that a reversal p is either a split reversal, that increases the
number of cycles by one, (in this case we have cyc(m o p) = cye(m) + 1), or a joint reversal, that
decreases the number of cycles by one (in this case we have cyc(m o p) = cye(mw) — 1), or a neutral
reversal, that maintains the number of cycles unchanged (in this case we have cyc(mop) = cyc(w)).
In order to characterize these three types of reversals, we assign a direction to each black edge,
according to an arbitrary tour in each cycle of the graph. Then, if the extremities of the reversal
are in black edges in the same cycle and have opposite directions, we have a split reversal. If
the extremities of the reversal are in black edges in different cycles, we have a joint reversal
(independently of the directions of the black edges). Finally, if the extremities of the reversal
are in black edges in the same cycle and have the same direction, we have a neutral reversal
that does not change the number of cycles in the graph. To understand the reasons of these
effects, we should investigate how the reversals affect the topology of the graph. In fact, only
the two black edges that correspond to the extremities of the reversal are modified. Although
some vertices may also have their corresponding values inversed, all the other edges in paths that
alternate gray and black edges remain unchanged (consequently, their relative directions remain
also unchanged). Figure 9 illustrates the three types of reversals.

In order to sort a permutation, we must maximize the number of split reversals in the sorting
sequence. With this information, we can start to conceive the formula for the reversal distance.

If we can find a sequence s that has only split reversals for sorting a breakpoint graph m, the

20

3.2. The breakpoint graph and the reversal distance

(B1) split reversal

(A1) (A2)
two cycles one cycle 0 -3 +2 +1 -4 +5
At
1 /-/_\& 1
[| oy
A B C D Ab—B c—=D L:;::%§?7‘=::::;:5
— L 0562308 g D1 A o 45
split join neutral (B2) joint reversal
1 1

0 -3 +4 > -1 -2 -€>;§-+5

A CB D A -C -B D
\ f / “ 1
. \ ! —
one cycle one cycle 0 -3 +2 +1 -4 +5

(B3) neutral reversal

unchanged paths alternating
gray and black edges

A

1 0 -3 +2 +1 -4 +5

LA
1“1 '\ ‘/_){\\ !
[\& <3 b/ A
A Bl Y A BB C/C D @m
0 -3 +2 +4 -1 +5

Figure 9: The effects of a reversal over the breakpoint graph. We may assign o direction to each black edge,
by an arbitrary tour in each cycle of the graph. The images A1 and A2 illustrate how a reversal affects the
topology of the graph. The point A,B (respectively A,-C) appears before the point C,D (respectively -B,D)
in the considered permutations. Observe that, with respect to the topology, only the two black edges that
correspond to the extremities of the reversal are modified. All the other edges in paths that alternate gray
and black edges remain unchanged, although the vertices that are between B and C in the permutation
must have their corresponding values inversed. (A1) The two cycles on the top are joined by a reversal
whose extremities are in the represented black edges. Inversely, the unique cycle on the botton is split by
a reversal whose extremities are in the represented black edges, that have opposite directions. (A2) The
number of cycles in the graph is not changed by a reversal whose extremities are in black edges in the same
cycle, with the same direction. The images B1, B2 and B3 show the effects over the breakpoint graphs
represented in the standard form. (B1) Split reversal: a reversal whose extremities are in black edges in
the same cycle and opposite directions may break the cycle in two. (B2) Joint reversal: A reversal whose
extremities are in black edges in different cycles may join the two cycles in one (independently of the
directions of the black edges). (B3) Neutral reversal: a reversal whose extremities are in black edges in
the same cycle and same directions does not change the number of cycles in the graph.

length of s is pts(m) — cyc(m). However, a split reversal does not always exist. For example, if all
black edges of all cycles in the graph have the same direction, we cannot perform a split reversal
(Figure 10 (A)). Thus, in some cases, we may need to add some joint and/or neutral reversals

in a sorting sequence, and the reversal distance is d(mw) > pts(mw) — cyc(m).

21

Chapter 3. Sorting by reversals

Fortunately, it is always possible to calculate the number of non-split reversals in a sorting
sequence. We can define an exact formula to the reversal distance, but first we need to define
other properties of the breakpoint graph. When a cycle in the graph has black edges with opposite
directions, it is called an oriented cycle. Otherwise all black edges in the cycle have the same
direction and we have an unoriented cycle. A component of the graph is a collection of cycles,
such that each cycle of the component has at least one gray edge that overlaps with a gray edge of
another cycle in the component. Adjacencies are trivial components, and a non-trivial component
contains at least two breakpoints. When a non-trivial component has at least one oriented cycle,
it is an oriented component. Otherwise it is an unoriented component. Figure 10 (B) shows a
breakpoint graph with an oriented and an unoriented component.

(A) (B)

Unoriented component Oriented component

4

U++34+2++1\>+4 D++34+2++13+4+-6+ +5+7

Figure 10: (A) A breakpoint graph in which we cannot perform a split reversal. (B) A breakpoint graph
with an oriented and an unoriented component.

A reversal p is called cut reversal when its extremities are in the same cycle of an unoriented
component. A cut reversal is always neutral and transforms an unoriented component into an
oriented component (Figure 11 (A)), thus we say that a cut reversal eliminates an unoriented
component (observe that a cut reversal does not change the number of cycles in the breakpoint
graph). When the breakpoint graph has more than one unoriented component, it is not always
necessary to use one cut reversal for each unoriented component. An unoriented component Y
separates two other unoriented components X and Z when there is a black edge of Y between
any black edge of X and any black edge of Z. In this case, a reversal that has one extremity in
X and one extremity in Z will regroup the components X, Y and Z into one oriented component
(Figure 11 (B)); this kind of reversal is called merge reversal. A merge reversal is always a joint
reversal that regroups ¢ unoriented components into one oriented component, for i > 2, thus we
say that a merge reversal eliminates ¢ > 2 unoriented components (observe that a merge reversal

decreases the number of cycles in the breakpoint graph by one).

22

3.2. The breakpoint graph and the reversal distance

(A) cut reversal (B) merge reversal
{X)
{Z) {Y)
D—)—+3®+4—)—-Ei—)—+5—(—+1Jr 0++2++4m+7++3++8++1++9
I

L 4

D++30-’I/—§+4—}-6++5++7 0B 4=« -2+ +5 K +75- 435485 +15 49

Figure 11: (A) A cut reversal transforms an unoriented into an oriented component and does not change
the number of cycles in the breakpoint graph (it is a neutral reversal). (B) The unoriented component Y
separates the unoriented components X and Z. A merge reversal regroups the unoriented components X,
Y and Z into one oriented component and decreases the number of cycles in the breakpoint graph of one
(it is a joint reversal).

An unoriented component that does not separate two other unoriented components is called
a hurdle. We represent by hrd(m) the number of hurdles in a breakpoint graph 7. Since a
hurdle does not separate unoriented components, each hurdle X can be eliminated either by a
cut reversal whose extremities are in points of the same cycle of X (Figure 11 (A)), or together
with another hurdle Z by a merge reversal whose extremities are in a point of X and a point
of Z (Figure 11 (B)). A cut reversal eliminates one hurdle and does not change the number of
cycles in the graph, while a merge reversal eliminates two hurdles at once, and decreases the
number of cycles in the graph by one. Thus, each hurdle requires one additional reversal and
we can improve the distance formula to d(m) > pts(m) — cye(n) + hrd(m). We say that a hurdle
Z protects an unoriented component Y that is not a hurdle, if Y becomes a hurdle after the
elimination of Z by a cut reversal. In this case, the hurdle Z is called super-hurdle. Eliminating a
super-hurdle by a cut-reversal does not decrease the number of hurdles in the graph (Figure 12),
consequently a super-hurdle may always be eliminated together with another super-hurdle by
a merge reversal, that will regroup the two super-hurdles and their corresponding protected
unoriented components into one oriented component (Figure 11 (B)).

It remains only one particular case to complete the reversal distance formula. When all
the ¢ hurdles of a breakpoint graph are super-hurdles and ¢ is an odd number, the permutation

requires an additional effort to be sorted. A breakpoint graph with this characteristic is called a

23

Chapter 3. Sorting by reversals

{x)
(Z) (4]
0> +25 +4m+7+ 135 +85-+151 +9
I
¥
x)
2) {v)

0++2++4m+7++39—+8++1++9

Figure 12: The unoriented component Y separates the super-hurdles X and Z. After eliminating the super-
hurdle Z by a cut reversal, the component Y becomes a hurdle, thus the number of hurdles in this graph
is not reduced after applying this cut reversal.

fortress. One additional reversal is sufficient to eliminate the fortress (this reversal may be chosen
among several possibilities, for example a cut reversal to eliminate a hurdle, or a merge reversal
regrouping two hurdles). We denote by frt(m) a value that indicates whether the breakpoint

graph 7 is a fortress or not. Thus, if 7 is a fortress, then fri(n) = 1, otherwise frit(m) = 0.

+E S+ G B o+ T + 0 -+ 11 B 130 12 B 4

Figure 13: A fortress with 8 super-hurdles (X, Y and Z).

Table 1 summarizes the effects of a reversal that is part of an optimal sorting sequence in a

breakpoint graph. The final formula for the reversal distance is:

d(m) = pts(m) — cye(n) + hrd(w) + fri(n)

Remember that if 7 = (my,m2,...,mh—1,7T,) is a linear permutation, then pts(w) = n + 1.

Otherwise 7 is a circular permutation and pts(w) = n.

24

3.3. Safe and unsafe reversals

Reversal Type Acye(n) Ahrrdx) Afri(x)
split split +1 0 n/A
hurdle cut neutral 0 -1 n/A
hurdle merge joint -1 —2 n/A
fortress elim by neutral 0 0 -1

unor. comp. cut

fortress elim by joint —1 -1 -1
unor. comp. &
hurdle merge

Table 1: The effects of a reversal that is part of an optimal sorting sequence in a breakpoint graph. The
columns Acye(ry, Dnrdr) and Agpyry give, respectively, the variation in the number of cycles, hurdles
and fortress of a permutation after applying each reversal.

3.3 SAFE AND UNSAFE REVERSALS

If a breakpoint graph does not have unoriented components, it can be sorted with split reversals
only. However, if we take no caution to select a split reversal, it may cause the production of
new hurdles, which is an undesirable side effect (Figure 14 (A)). A split reversal that produces
hurdles is called unsafe reversal, while a split reversal that does not produce hurdles is called
safe reversal (Figure 14 (B)). Fortunately, it has been proven that, for any oriented component,

there is always one safe reversal [53].

(A) unsafe reversal (B) safe reversal

+5L T +3 - +8 6O +T - +35-+8

¥

{X}
)

{Z)
D++2++4m+7++3++8++1++9 A2 B 3 T 5540

Figure 14: (A) An unsafe reversal breaks a cycle in two, but creates three unoriented component (X, Y
and Z). (B) Alternatively, a safe reversal breaks a cycle in two without creating unoriented components.

Hurdles are very rare, and fortresses are even more rare in permutations that represent real

genomes [9]. In practice, split reversals are sufficient to sort the majority of the permutations,

25

Chapter 3. Sorting by reversals

and the main challenge is to find safe reversals. A simple way to do that is testing each split
reversal to verify whether it is safe or not, until finding a safe reversal. However, there are faster
ways to select a safe reversal, and one approach is based on another structure related to the

breakpoint graph, that is called overlap graph (see more details in [37]).

3.4 SORTING A SIGNED PERMUTATION

With the approach described in this chapter, we can obtain a procedure to sort a permutation

7 by reversals (Algorithm 1).

Algorithm 1 Sorting a signed permutation
Input: A signed permutation =
Output: An optimal sequence of reversals sorting 7

construct the breakpoint graph of 7
s+ € [sis an empty sequence in the beginning]
if frt(r) =1 then
choose a reversal p to eliminate the fortress
M« TOop
s+ s-p [concatenates the reversal p to s]
end if
while there is a pair of super-hurdles X and Y in 7= do
choose a merge reversal p to eliminate X and Y
M« TOp
s« s-p [concatenates the reversal p to s
end while
while there is a hurdle Z in 7 do
choose a cut reversal p to eliminate Z
M TOp
s+ s-p [concatenates the reversal p to s]
end while
while 7 is not sorted do
choose a safe split reversal p to =
M« TOp
s+ s-p [concatenates the reversal p to s]
end while
return s [sis an optimal sorting sequence for 7|

The theoretical complexity of Algorithm 1 is O(n°), where n is the size of the input per-
mutation [53]. Further studies improved this theoretical complexity and currently the fastest
algorithm to find an optimal sorting sequence is subquadratic [11, 31, 63], while the reversal

distance can be computed in O(n) time [4].

26

3.5. The symmetry of sorting by reversals

3.5 THE SYMMETRY OF SORTING BY REVERSALS

For any sequence of reversals s = p1ps ... pg—1pq sorting a permutation 7 into a permutation 7,
we define the inverse of s as inv(s) = pgpg—1 - .. p2p1. Observe that the sequence inv(s) sorts mp
into 7, and, consequently, each optimal sequence sorting 7 into 7 has an equivalent optimal se-
quence sorting 77 into 7. If we go back to Figure 6, in which the reversal distance between the two
genomes is 4, for instance, we see that, while the optimal sequence s = {1,2,4}{1,3,4}{2,3,4}{3}
sorts genome A into genome B, the optimal sequence inv(s) = {3}{2,3,4}{1,3,4}{1,2,4} sorts
genome B into genome A. Due to this, the approach of sorting one genome into another by

reversals is said to be symmetric.

3.6 COMPONENT-SPECIFIC REVERSALS

A merge reversal joins cycles, and, since it only appears in optimal sequences for eliminating
hurdles or the fortress, it merges components. In contrast, a split or a neutral reversal is always
internal to a component, and does not change the properties of the other components in the

breakpoint graph.

Proposition 1 Applying a split or neutral reversal p in a permutation © does not change the

components of m that do not contain the extremities of p.

Proof. The extremities of a split or neutral reversal p are in the same cycle, and consequently,
in the same component of m. The other components of m are either completely within p, or
completely external to p. If a component C' is within p, all points in C are inversed, but
the number of cycles, and the relative directions of the black edges in the cycles of C' remain

unchanged. If a component C' is external to p, then C remains obviously unchanged. O

Due to this, if a permutation 7 can be sorted with split and neutral reversals only, then
the components of m can be sorted independently. A breakpoint graph that does not contain
super-hurdles can be sorted with split and neutral reversals only, thus the components of this

kind of breakpoint graph can be sorted independently.

27

Chapter 3. Sorting by reversals

Sorting oriented components independently is a topic that has been studied in several works

on the sorting by reversals problem (see for instance [11]).

28

Chapter 4

Traces of sorting sequences of reversals

Summary
4.1 The space of all optimal sorting sequences 30
4.1.1 The symmetry of the space of sorting sequences 30
4.1.2 An algorithm to enumerate all sorting sequences 31
4.2 TraceS .« v v v v v o v v v o ot ot t ot it e e e e e e e 33
4.2.1 The symmetry of traces L 35
4.2.2 Normal form of atrace 35
4.2.3 Computing traces by enumerating all sorting sequences 36
4.3 An algorithm to directly enumerate the traces 38
4.3.1 The algorithm L 38
4.3.2 Theoretical complexity L L o 40
4.4 Component-specific reversals and trace composition 43
4.5 Implementation and performance v v vt i o 49
4.6 Finalremarks o i i i i it i e e e e e e e e e 50

As we saw in the previous chapter, when duplications are not allowed, computing the reversal
distance between two genomes and finding an optimal sequence of reversals that sort a genome
into another can be solved in polynomial time [32, 33]. However, the number of optimal sorting
sequences is usually huge. Considering the permutation (—12,11,-10,6,13,—5,2,7,8,-9,3,4,1),
for example, the number of sorting sequences is 8,278,540, and it can be insufficient when at-
tempting a biological interpretation to know only one among them. In order to select a potentially
more meaningful solution, some studies find a sequence in which the reversals do not break the
common intervals [26], which are the clusters of co-localised genes between the two considered

genomes.

29

Chapter 4. Traces of sorting sequences of reversals

Alternatively to all the studies that give only one sequence among possibly many, Siepel [59]
proposed an algorithm that allows the enumeration of all sorting sequences. However, as the
list of all sorting sequences is usually huge, enumerating all is almost as useless as giving only
one of them. Bergeron et al. [9] then observed that many sorting sequences are equivalent and
might be grouped in equivalence classes. This approach can reduce considerably the universe of
sequences to be handled. However, the authors did not provide an algorithm to enumerate the
classes without enumerating all the sequences.

One important result of our work is an answer to this question. We provide an algorithm
to directly enumerate all the classes of equivalent sorting sequences and to count the number
of sequences in each class. Unfortunately, although the number of classes is much smaller than
the number of sequences, it can still be too big to be interpreted. We implemented all the
algorithms that we have developed integrated to BAOBABLUNA, a java framework to deal with
permutations and reversals, that will be described in Chapter 6. Unfortunately, we verified that
currently we are unable to compute traces for permutations with a reversal distance of about
20 or higher. Nevertheless, with BAOBABLUNA we run several experiments, showing the gain in
the execution time when the traces are computed directly, with respect to the enumeration of
all sorting sequences (all experiments were made on a 64 bit personal computer with two 3GHz

CPUs and 2GB of RAM).

4.1 THE SPACE OF ALL OPTIMAL SORTING SEQUENCES

The space of all optimal sequences sorting a permutation 7 into a permutation 77 is defined as

the set S ={ s | s is an optimal sequence sorting 7 into 7 }.

4.1.1 The symmetry of the space of sorting sequences

Since the sorting by reversals is a symmetric approach, the same is valid for the space of sorting
sequences. Recall that, for any sequence of reversals s = p1p2 ... p4—1p4 sorting a permutation
7 into a permutation 7y, we defined the inverse of s as inv(s) = pgpg_1-..p2p1- Observe that
the sequence inv(s) sorts mp into 7, and, consequently, each sequence sorting 7 into 7 has an

equivalent sequence sorting 7 into 7.

30

4.1. The space of all optimal sorting sequences

Let S be the set of all optimal sequences sorting 7 into 7. We define the inverse of S as

inv(S) = {inv(s) | s €S }.

Proposition 2 The set S contains all optimal sequences sorting w into wr, if, and only if,

inv(S) is the set of all optimal sequences sorting T into .

Proof. We saw that, for each sequence s € S sorting 7 into 7, there is a sequence inv(s) €
inv(S) that sorts mp into 7. By contradiction, we prove that inv(S) contains all sequences that
sort 7 into 7. Otherwise, suppose a sequence u ¢ inv(S), such that u sorts 7 int 7. Then we
would have a sequence inv(u) that sorts 7 into 77 and, since u ¢ inv(S), inv(u) ¢ S. This is a
contradiction, because S is assumed to contain all sequences sorting 7 into 7.

The proof in the opposite direction is analogous. O

Due to Proposition 2, we can say that enumerating the optimal sequences that sort 7 into

77 is equivalent to enumerating the optimal sequences that sort 77 into 7.

4.1.2 An algorithm to enumerate all sorting sequences

The space of all sorting sequences can be generated thanks to an algorithm proposed by Sie-
pel [59]. Given a permutation m, the algorithm of Siepel [59] computes all optimal 1—sequences
for m. Considering the permutation m = (—3,2,1, —4), for example, the possible 1—sequences
are {1}, {1,2,3}, {1,2,4}, {2}, {3} and {4}. This algorithm has complexity O(n?) and results
in O(n?) reversals, where n is the size of the input permutation.

With this algorithm, we can obtain the set of all optimal sorting sequences for a given
permutation 7. The sorting sequences can be constructed iteratively, so that, at a step i, for
each optimal (i — 1)—sequence s previously computed we run the algorithm of Siepel [59] to find
all optimal 1—sequences for 7 o s and concatenate each returned 1—sequence p to the sequence
s, constructing an i—sequence sp. In other words, the set of i—sequences is computed from the
set of optimal (i — 1)—sequences by iterating the algorithm for finding all 1—sequences. This

iterative procedure is described in Algorithm 2.

Theoretical complexity of Algorithm 2. The algorithm of Siepel [59], that searchs all optimal

1—sequences for a given permutation, results in O(n?) optimal 1—sequences. For each step i,

31

Chapter 4. Traces of sorting sequences of reversals

Algorithm 2 Enumerating all optimal sorting sequences for a permutation

Input: A signed permutation =
Output: The set of all sequences of reversals sorting 7

d « reversal distance of m

R — {p | pis an optimal 1—sequence for 7} [Siepel [59]]

S—TR
for each integer i from 2 to d do
S’) [contains the i—sequences]
for each sin § [sis an (i — 1)—sequence] do
n’ «—mos [apply the (i — 1)—sequence s to 7]

R «— {p | pis an optimal 1—sequence for 7'} [Siepel [59]]

for each reversal p € R do

s« s-p [concatenate p at the end of sequence 3]

insert s’ in &’ [s' is an i—sequence]
end for
end for
S8
end for
return S [S is the final set of d—sequences]

the size of the set of optimal i—sequences is therefore at most n? % n
is, O(n?). Since the algorithm of Siepel has complexity O(n?), we can enumerate the set of all
optimal sorting sequences in time at most n3* > ¢_, n?* where n is the size and d is the reversal

distance of the input permutation (d is O(n)). In this way, Algorithm 2 has time complexity

O(n2n+3)_

If 7 = (-3,2,1,—4), running Algorithm 2 for the permutation 7 will result in 28 optimal

sorting sequences (Table 2).

01. {1}{1.2,3}{2}{4} 11, {1,2,3{4}{1}{2}
03. {1}{2}{1,2,3}{4} 13. {2H{1}1,2,3}{4}
04. {1}{2}{4}{1.2,3} 14, {2}{1}{4}{1,2.3}
07. {1.2,3}{1}{2}{4} 17 {2}{4}{1}{1. 2,3}
08. {1,2,3{1}{4}{2} 18. {2}{4}{1,2,3}{1}
09. {1,2,3{2}{1}{4} 19. {4H{1}{1,2,3}{2}
10 {1,2,342}{4}{1} 20. {4}{1}{2}{1.2.3}

21.
22,
23.
24.
25.
26.
27.
28.

2

{4H{1,2,3}{1}{2}
{4H1,2,3}{2}{1}
{4H{2{1}{1,2,3}
{4}{2}{1, 2, 3}{1}
{1,2,4}{1,3,4}{2,3,4}{3}
{1,2,4}{1,3,4}{3}{2, 3,4}
{1,2,4}3{3}{1,3,4}{2,3,4}
{31{1,2,4}{1,3,4}{2, 3,4}

Table 2: The 28 optimal sequences of reversals sorting (—3,2,1,—4).

With this method we can explore the solution space of sorting a genome into another by
reversals. Nevertheless the list of all sorting sequences is usually huge, thus enumerating all

is almost as useless as giving only one of them. Table 3 shows, by several examples, how the

32

% ...%n? (i times), that

4.2. Traces

number of sorting sequences may increase as the reversal distance between the considered genome

increases.
Permutation () Ny d(nm) Ng
ma = (-3,2,1,—4) 4 4 28
g =(—4,1,-3,6,—7,-5,2) 7 6 204
o = (—6,5,7,—1,—4,3,2) 7 6 496
mp = (—4,-3,12,-11,-8,10,9,7, —6, —5,2, —1) 12 8 31,752
= (—4,3,12,-11,-8,10,9, 7, -6, —5,2, —1) 12 9 407, 232
mr = (—12,11,-10,6,13,-5,2,7,8,-9,3,4,1) 13 10 8,278, 540
e = (—12,11,-10,-1,16,—4,-3,15,-14,9, -8, -7, -2, —13,5, —6) 16 12 505, 634, 256
g = (—12,11,-10,6,-5,13,2,7,8,—9, 14, —15, 3,4, —16, 1) 16 13 40,313,272, 766

Table 8: Examples of permutations, their sizes, their reversal distances and their number of optimal
sorting sequences.

4.2 TRA

CES

Bergeron et al. [9] observed that many sorting sequences are equivalent and may be grouped in

equivalence classes. Intuitively, all optimal sorting sequences in the same equivalence class are

composed by the same reversals, but applied in different orders. The 28 sequences that sort the

permutation 74 = (—3,2,1,—4), for example, can be grouped in two classes of equivalence, one

with 24 and the other with 4 sequences (Table 4).

Class 1:
01. {1}{1,2,3}{2}{4} 09.
02. {1}{1,2,3}{4}{2} 10.
03. {1}{2}{1,2,3}{4} 11.
04. {1}{2}4}{1,2,3} 12.
05. {1}{4}{1,2,3}{2} 13.
06. {1}{4}{2}{1,2,3} 14.
07. {1,2,3}{1}{2}{4} 15.
08. {1,2,3}{1}{4}{2} 16.
Class 2:
01. {15254}{1737 4}{2737 4}{3}
02' {17254}{1737 4}{3}{2’ 354}

{1,2,3H2H{1}{4}
{1,2,3}{2}{4 {1}
{1,2,3H4{1}{2}
{1,2,3{4}{2H{1}
{2H{11{1,2,3}{4}
{2H{1H{4}{1,2,3}
{23{1,2, 3{1}{4}
{211, 2, 33 {4 {1}

03.
04.

17.
18.
19.
20.
21.
22.
23.
24.

{2H{4H{1}{1,2,3}
{2}{4}{1,2,3{1}
{4{1H1,2,3}{2}
{4H{1}{2}{1,2,3}
{4}{1,2,3}{1}{2}
{43{1,2,3}{2}{1}
{4H{2H{1}{1,2,3}
{43{2H{1, 2,3{1}

{1,2,4}{3}{1, 3,4}{2,3,4}
{3}{1,2,4}{1,3,4}{2,3,4}

Table 4: The two equivalence classes of optimal sequences of reversals sorting (—3,2,1, —4).

To formalize the equivalence relation of these classes, we need to introduce the concept of com-

mutation. Two intervals (or reversals) are said to overlap if they intersect but none is contained in

the other. For example, in the permutation (—3,2,1,

33

—4), the intervals {2,3} and {1,2,4} over-

Chapter 4. Traces of sorting sequences of reversals

lap, while {2,3} and {1,2,3} do not. Let s = p1p2...pi—1pipit+1pPi+2 - - - pa be a valid sequence
of reversals for a permutation 7, and p; and p;+1 be two non-overlapping reversals that appear
consecutively in s. As p; and p;+1 do not overlap, then p;11 is an interval of m o p1ps ... p;—1 and
pi is an interval of ™ o p1ps...p;_1pis1, that is, the sequence s’ = p1po ... pi_1pis1piPite - - - Pd,
which is obtained replacing p;p;+1 by pir1pi in s, is also a valid sequence of reversals for w. The
operation of inverting the order of two consecutive non-overlapping reversals p; and p;4+1 in a

sequence of reversals s is called commutation of p; and p;41.

Two sequences are said to be equivalent if one can be obtained from another by a sequence
of commutations of non-overlapping reversals. An equivalence class of optimal sequences of
reversals under this equivalence relation is called trace. It is easy to see that all the sequences in

a trace have the same number of reversals. We denote then by i—trace a trace of i—sequences.

The concept of traces is well studied in combinatorics, see for example [25]. It is particularly
relevant in our study because of a result proven in [9], that states that the set of all optimal
sequences of reversals sorting a signed permutation is a union of traces. As a consequence, if the
set of sorting sequences is too big to be enumerated, the set of traces may be a more relevant

result for the problem of sorting by reversals.

Observe that, for a given permutation, all sequences in the same trace are composed by the
same reversals, but not every pair of sorting sequences composed by the same reversals are in
the same trace. If we take the permutation = = (-4, 3,12, -11,-8,10,9,7, -6, —5,2, —1), for
instance, we find two sequences (see Table 5) that sort 7 and are composed by the same reversals.
However, one cannot be obtained by a sequence of commutations of non-overlapping reversals

over the other, thus they are not in the same trace.

{1,2}{7}{8,10}{1,5,...,11}{8,9}{1,3,4,12}{2,...,12}{3,...,11}
{2,...,12}{7}{8, 10}{1, 3,4, 12}{8, 9}{1,5, ..., 11}{1, 2}{3, ..., 11}

Table 5: Non-equivalent sequences composed by the same reversals.

34

4.2. Traces

4.2.1 The symmetry of traces

For a given trace T of optimal sequences of reversals sorting 7 into mp, we define the inverse of

T as inv(T) ={ inv(s) | s€ T }.

Proposition 3 The set T is a trace of optimal sequences of reversals sorting w into 7, if, and

only if, inv(T) is a trace of optimal sequences of reversals sorting mr into .

Proof. We saw that each s is a sequence sorting 7 into 7y, thus, inv(s) is a sequence sorting 7p
into 7. For each pair of sequences s, s’ € T, we always obtain a pair inv(s), inv(s’) of equivalent
sequences under the commutation of non-overlapping reversals (each pair of non-overlapping
reversals p and 0 in s and s’ has a corresponding pair of non-overlapping reversals 6 and p in
inv(s) and inv(s')), thus all sequences in inv(T) are equivalent. By contradiction, we prove also
that inv(T) is a trace, that is, for a given sequence u € inv(T), all sequences that sort 7 into
7 and are equivalent to u are in inv(7T). Otherwise, suppose a sequence v that is equivalent to
u, such that v is not in inv(7T). Then we would have a sequence inv(v) that is equivalent to
inv(u), and, while inv(u) is in T, inv(v) is not. This is a contradiction: since 7" is assumed to be
a trace, it contains all sequences that are equivalent under the commutation of non-overlapping
reversals.

The proof in the opposite direction is analogous. a

Let 7 = { T | T is a trace of optimal sequences sorting 7 into 7y } be the set of all traces
sorting 7 into mp. We also define the inverse of 7 as inv(7) = { inv(T) | T € T }.

As a consequence of Proposition 3, we can affirm that 7 is the set of all traces sorting 7 into
mp if, and only if, inv(7) is the set of all traces sorting 7p into 7. Thus, computing the traces

from 7 to mr is equivalent to computing the traces from 7 to .

4.2.2 Normal form of a trace

A sequence s of a trace T is said to be in normal form if it can be decomposed into substrings®

s=1uy < -+ < Uy’ such that:

5The “substrings” are all contiguous subsets of the sequence of reversals.
"In the original notation the normal form is s = w1 . .. |um, but we prefer to use the symbol ‘<’ instead of ¢|.

35

Chapter 4. Traces of sorting sequences of reversals

e every pair of reversals of a substring u; is non-overlapping;

e for every reversal p of a substring u; (i > 1), there is at least one reversal 6 of the substring

u;—1 such that p and 6 overlap;

e every substring u; is increasing according to the lexicographic order.

A theorem by Cartier and Foata [23] (cited in [9]) states that, for any trace, there is a unique
element that is in normal form. We may therefore represent a trace by its element in normal
form. The two traces of sequences sorting the permutation m = (—3,2,1,—4), described in
Table 4, for example, can be represented by the corresponding normal forms {1}{1,2,3}{2}{4}
and {1,2,4}{3} < {1,3,4} < {2,3,4}.

Given an optimal sorting sequence s = p1ps ... pq for a permutation 7 with reversal distance
d, the normal form of the trace T that contains s is constructed by iteratively adding the elements
pi, 1 <i <mn, to the normal form f of the (i — 1)—trace containing the sequence pj ... p;—1. This

adding procedure is represented by f -+ p; and described by Algorithm 3.

Algorithm 3 Adding an element p; to a normal form f of an (i — 1)—trace: f + p;

Input: The normal form f = u; < ug < --- < uy of an (i — 1)—trace and the next element p;
Output: The normal form of the i—trace containing the sequence ujus . .. ugp;

Let j be the maximum index such that u; contains an element that overlaps with p;, or 0 if such a u;
does not exist
if j =k then
Add a new substring up+1 < p;
else
Add p; to the substring u;41, according to the lexicographic order
end if

Theoretical complezity of Algorithm 8. Since the reversal distance and the interval sizes are
bounded by n, the procedure has complexity O(n?logn), considering that the elements of each
reversal have to be sorted, which takes O(nlogn), and that comparing reversals may be done in

O(n). O

4.2.3 Computing traces by enumerating all sorting sequences

An algorithm to enumerate all the traces can be derived from the algorithm that enumerates all

the optimal sorting sequences. For each sequence, we may simply compute the associated trace

36

4.2. Traces

and add it to the list of found traces if it is not already in it (Algorithm 4).

Algorithm 4 Enumerating all optimal sorting sequences and computing traces

Input: A signed permutation 7
Output: The normal form and counter (f, ¢) of each trace of optimal sequences of reversals sorting 7

d < reversal distance of
S « all optimal sorting d—sequences for m [Algorithm 2]
T «— () [contains the d—traces]
for each sin & [s is a sorting d—sequence] do
fs < € [to construct the normal form of s]
for each p; in s = p1pa...pq do
fs — fs+p; [Algorithm 3]
end for
if there is (f,c) € 7 such that f; = f then
¢« c+1 [update the counter of the d—trace repr. by f|
else
insert (fs,1)in 7 [(fs,1) represent a d—trace]
end if
end for
return 7 [7 is the final set of d—traces]

Theoretical complexity of Algorithm 4. The set of all optimal d—sequences can be computed
with Algorithm 2 that has complexity O(n?"*3), where n is the size of the permutation. There

remains to construct the normal form of each trace and to group the sorting sequences by trace.

The normal form of each sorting sequence is compared to a list of previously constructed
normal forms of traces, so that the trace counter is incremented if it exists already; otherwise
the trace is inserted in the list with counter equal to 1. This may take O(n?log V) operations,
where O(n?) is the size of a trace and N is the number of found traces. As N is bounded by the

number of sorting sequences, we have n?log N < n?log(n®?) = 2n3logn.

Eventually, the total time complexity for enumerating all the normal forms of the traces is

bounded by O(n?"*3) 4 O(n**(n?logn + 2n3logn)) = O(n***3logn). 0

The upper bound on the theoretical complexity of Algorithm 4 does not give hope that this
method can be applied to big permutations. We shall actually see in practice that it is intractable

for permutations 7 above around d(7) = 10.

37

Chapter 4. Traces of sorting sequences of reversals

4.3 AN ALGORITHM TO DIRECTLY ENUMERATE THE TRACES

Bergeron et al. [9] provided no algorithmic insight for enumerating directly the traces, without
enumerating all sorting sequences. The authors stated as an open problem the complexity of
giving one element in each trace. One of the main contributions in our work is a solution to
this problem, that is, an algorithm that enumerates the normal forms of all the traces of optimal
sorting sequences given a signed permutation, and counts the number of sequences in each trace,
without enumerating all the sequences.

The idea of the algorithm to enumerate the traces is almost naturally contained in the follow-
ing notions. First we noticed that for any integer k from 1 to d(7), if s and s" are two equivalent
optimal k—sequences for , that is, s can be obtained from s’ by a sequence of commutations of
non-overlapping reversals, then m o s = 7 o s’. The equivalence class that contains the sequences
s and s’ is called a k—trace. Observe that all sequences in an k—trace t are prefixes of at least
one trace T of optimal sorting sequences for 7. Thus, t is said to be a k—prefiz of T. In other
words, we can say that a k—trace ¢t is a k—prefix of an i—trace T (k < i) if and only if each
k—sequence of t is a k—prefix of at least one i—sequence of T'. In addition, we observed that the
number of sequences in an i—trace is the sum of the number of sequences in its (i — 1)—prefixes
(see Figure 15). Instead of enumerating incrementally all the i—sequences and then computing
and comparing the traces, it is therefore more valuable to enumerate incrementally and compare

directly all the i—traces.

4.3.1 The algorithm

We may construct all i—traces simultaneously in an incremental way, without generating all the
sorting sequences. With no additive cost, we also compute the number of sequences in each

i—trace. The method is detailed in Algorithm 5.

Theorem 1 At the end of Algorithm 5, T contains, for every trace T of optimal sequences for

sorting 7, one element of T (the normal form) and the number of sequences in T.

Proof. The proof is by induction. We prove that at the end of step ¢ of the main loop of

Algorithm 5, the set 7 contains all the normal forms and the size of the i—traces of optimal

38

4.3. An algorithm to directly enumerate the traces

{3}{1.2,4}{1.3,4}{2.3.4}
4-trace: {1,2,4}{3}{1,3,4}3{2,3,4}
{1.2,43{1,3,43{3}{2,3.4}
{1.2,4}{1,3,4}{2,3,4}{3}
size=3+1=4

/\

{3¥{1,2,4¥{1,3.4}

{1.2.4}{3}{1.3.4} {1,2,4}{1,3,4}{2,3.4}
3-traces: {1.2,4}{1,3,4}{3} size=1
size=2+1=3 /
fi {3¥{1.2,4}
PrETXES | 2-traces: (12,433} {1,2,4}{1,3,4}
size=1+1=2 size=1
1-traces: {3} (12,4}
size=1 size=1

Figure 15: Decomposing a 4-trace in its prefizes.

sequences for .

For i = 1, each 1—trace is generated by running the algorithm of Siepel [59] over = and the

size of a 1—trace is 1.

For an arbitrary 2 < i < d(m), by hypothesis, 7 contains all the normal forms and the size
of the optimal (i — 1)—traces. Every i—trace has a prefix in this set, since a prefix of size i — 1
of an optimal i—sequence is an optimal (i — 1)—sequence. So every i—trace is found from an

(1 — 1)—trace by adding a 1—sequence.

Now it remains to prove that the cardinality of an i—trace T is the sum of the cardinalities of
its (i—1)—prefixes, so that the right size of all traces is computed. Let p1, ..., pr be the reversals
that are in the last position of at least one sequence in T'. Let x; be the number of elements of T
which have p; as their last position. Then the number of sequences of T" is) ;- Now, for all j,
since p; is the last reversal of an optimal i—sequence x1...x; 1pj of T', z1...x; 1 is an optimal
(i — 1)—sequence of reversals, so it belongs to an (i — 1)—trace 7" of size ;. By the induction
hypothesis, the size of the trace T is therefore the sum of the sizes of all (i — 1)—prefixes of T,

and the algorithm provides this size, since it generates all prefixes. O

39

Chapter 4. Traces of sorting sequences of reversals

Algorithm 5 Enumerating all the traces of a signed permutation

Input: A signed permutation =
Output: The normal form and counter (f,c) of each trace of optimal sequences of reversals sorting 7

d « reversal distance of 7™
T—0
S — {p | pis an optimal 1—sequence for 7} [Siepel [59]]
for each reversal p € S do
insert (p,1) in 7 [each first reversal is a 1—trace]
end for
for each integer i from 2 to d do
T’ —([contains the normal forms/sizes of all the i—traces|
for each (f,¢)in 7 [(f,c) represents an (i — 1)—trace] do
ny <« mo f [apply the (i — 1)—sequence f to 7]
S — {p | pis an optimal 1—sequence for 7} [Siepel [59]]
for each reversal p € S do
fo— f+p [Algorithm 3]
if there is (f’,c’) € 7’ such that f’ = f, then
' —c +s [upd. the counter of the i—trace repr. by f']|
else
insert (f,,c) in 7' [(f,,c) represent an i—trace]
end if
end for
end for
T T
end for
return 7 [7 is the final set of d—traces]

Figure 16 illustrates an execution of our algorithm for the permutation m = (—3,2,1, —4).

4.3.2 Theoretical complexity

As we saw, the algorithm basically repeats the same procedure for each prefix of a final trace
(see Figure 17). To each prefix we first apply the reversals of its normal form to the initial
permutation (this takes O(n?)). Then we compute the next 1—sequences thanks to the algorithm
of Siepel [59], that has complexity of O(n?®) and may return O(n?) 1—sequences. Each one of these
returned 1—sequences is added to the previous prefix in O(n?). Thus, each prefix is processed in
n? +n3 +n?xn? that is O(n?).

Consequently, the complexity of Algorithm 5 depends on the total number of prefixes, that
is given by ng) tre(i), where tre(i) is the number of i—traces of optimal i—sequences. To give
an estimation of the number of prefixes of a trace, we need to adopt a representation of the
traces as partially ordered sets (posets). It is possible to represent a trace 7' that contains an

optimal sequence p; ... pq by a partial ordering of the set Pr = {(p;, ki) }i, 1 < i < d, where k;

40

4.3. An algorithm to directly enumerate the traces

(Siepel {1 {1,2,3} {2y {4 {37 {1.2.4}
(1-trace size) 1/ 1/ 1 1\ 1/ \1
1-traces: {1} {1.2,3} {2} {4} {3} {1.2.4}
size=1 size=1 size=1 size=1 size=1 size=1
(Siepel) {1.z,af} @ W {1}/ \{2} T w’ {1,2',3}\{4} {1}/ ‘ \{2} \

{1.2,4} {3} {L34}

| /\

atraces: {1HL23} {1M2} {144} {123M2} {123M4} {2H4} {124M3t {124}<{134}

(size surm) 1

Size=2 size=2 size=2 size =2 size=2 size=2 size'=2 size=1
y N / ! | -) -~ / -
(Siepe) £y {n 0in W G2 o @ 2 {1.2,/3} 5.4 ©BY @34

(size sum)

3traces: ({12312} {1{123}4) (1218} (1231214} {1L24}B3)<{134) {1247<{134}<{23.4)

size=6§ size= size=6 size=§ size=3 size=1
T /
{Siepe) “r @} .23 {1} és,a} 31
(size sum) 3 1
4-traces: {13{1,2,33{2}{4} {1.2.4}{3}<{L.3.4} <{2.3.4}
size=24 size=4

Figure 16: Constructing oll the traces for the permutation @ = (—3,2,1,—4). In this example, the
set of prefizes of the final trace {1}{1,2,3}{2}{4} is disjoint of the set the prefizes of the final trace
{1,2,4}{3} < {1,3,4} < {2,3,4}. This does not correspond to the general case (final traces usually share

prefizes).
(size sum) 1% \/1

2-traces: (1}{1,2,3} {1}{2]
size =2 size =2

! Y {

{Siepel] {23 {ay {n23) ~

running time: Of n3)

returned reversals: O n2)
adding each raverzal O n)

(size sum)

3-traces: 113{1.2,3}{2} {1}{1
size =6 siz

T
(Siepel) f“}\

Figure 17: Processing o prefic of a trace when computing traces. To each prefix we first apply the
reversals of its normal form to the initial permutation. Then we compute the next 1—sequences thanks to
the algorithm of Siepel [59], that has complezity of O(n®) and may return O(n?) 1—sequences. Each one
of these returned 1—sequences is added to the previous prefiz in O(n?). Thus, each prefiz is processed in
O(n).

41

Chapter 4. Traces of sorting sequences of reversals

is the number of occurrences of the reversal p; in p;...pg. The relation <r is defined as the
transitive closure of the relation <, itself defined by (p;, k;) <0 (pj,k;) if and only if i < j and
pi and p; overlap. In other words, (p;, k;) <7 (p;,k;) if and only if the k" p; is always before
the k%" p; in the elements of T' (see [25]). For example, T = {1,2,4}{3} < {1,3,4} < {2,3,4}
is a trace of optimal sorting sequences of reversals for the permutation (—3,2,1,—4). The
elements of Pr are ({1,2,4},1), ({3},1), ({1,3,4},1) and ({2,3,4},1), and the relations are
({1,2,4},1) <r ({1,3,4},1), ({1,3,4},1) <r ({2,3,4},1) and ({1,2,4},1) <7 ({2,3,4},1).

The set Pr with the relation <7 is a partially ordered set (poset). A linear extension of a
poset is a total order <4, which satisfies p <7 0 = p <¢or 0. The set of all linear extensions of
(Pr, <r) is exactly the set of elements of the trace T' (see [25]). We may therefore identify the
trace T and the poset (Pr, <r), and simply speak about the poset 7'

The height of a trace T (or poset Pr) is the cardinality of the maximum set of elements of
Pr that is totally ordered by the relation <p. It is also the number of sub-sequences u; in the
normal form of the trace 7.

The width of a trace T' (or poset Pr) is a maximum cardinality set of elements of Pr that are
not comparable by the relation <. It correponds to the largest subset of reversals of 7" in which
every pair of reversals commute and is at least (but in general not equal to) the maximum size
of a sub-sequence u; in the normal form of the trace T. The width of a poset can be computed
in polynomial time thanks to a reduction of Fulkerson [28] to a bipartite matching problem.

The representation of a trace as a poset allows us to use the parameters of the poset in the
computations of the complexity of the algorithms, and it is also a nice way to present the solution
of sorting by reversals. Indeed, a poset corresponds to a set of reversals that may have occurred
during evolution and that could therefore help explain the difference between the organisation
of two genomes. It indicates what we know and what we do not know about the order in which
these potential reversals occurred. Instead of giving a list of sequences, or a unique sequence
representing an equivalence class, the poset therefore gives one possible sorting sequence, with
uncertainties as concerns the exact shape of the sequence.

An ideal of a poset (Pr, <r) is a subset U of Pr such that if p € U and 6 <p p, then 0§ € U.
It is very easy to see that ideals of posets and prefixes of traces correspond to the same notions,

and that in particular, the number of prefixes of a trace T is exactly the number of ideals of the

42

4.4. Component-specific reversals and trace composition

poset (Pr,<r). The advantage of this notation is that the number of ideals of a poset can be

estimated. It is bounded by n*, where n is the size of Pr and k is the width of the poset [61].

Theoretical complexity of Algorithm 5. The number of i—traces that we generate is therefore
bounded by N nk’"”, where N is the number of d—traces and k4, is the maximum width of a
d—trace. Given this estimation, we may give a bound to the complexity of our algorithm. Indeed,
for every i—trace, 1 <i < d — 1, we apply an O(n?) algorithm to find all the 1—sequences. For
all these 1—sequences (there are at most n? of them), we then apply Algorithm 3 to construct
the normal form of the (i + 1)—trace, and compare the constructed normal form to the current
list of normal forms of (i + 1)—traces. This gives a final complexity of O(NnFmaz(n3 + n?(n? +
nlog(NnFmaz)))) = O(Nnkmaz+d), 0

Observe that computing the number of linear extensions of a poset is # P—complete [19], and
the best known algorithms run in O(n*), where n is the size of the poset and k is its width [62].
Our algorithm counts the number of elements in each d—trace, that is the number of linear
extensions of the associated posets. Our time complexity thus nearly reaches the best known
complexity for the counting part.

The posets corresponding to the traces {1}{1,2,3}{2}{4} and {1,2,4}{3} < {1,3,4} <
{2,3,4}, that represent all optimal sequences sorting 7 = (—3,2,1,—4), have widths 4 and 2
respectively. In figure 16 we can observe that the number of prefixes of trace {1}{1,2,3}{2}{4},
that has the higher width, is effectively higher than the number of prefixes of trace {1,2,4}{3} <
{1,3,4} < {2,3,4}.

If in general the width of a poset may be as large as its number of elements, we have made
some experiments on simulated permutations (see Figure 18) which show that, in practice, this
parameter is often lower, which explains the speed-up of our algorithm compared to a total

enumeration procedure.

4.4 COMPONENT-SPECIFIC REVERSALS AND TRACE COMPOSITION

If a permutation 7 has two or more unoriented components, the space of sorting sequences

for m may contain sequences that have at least one merge reversal, to merge two unoriented

43

Chapter 4. Traces of sorting sequences of reversals

permutation with n=20 and d=8; permutation with n=20 and d=10; permutation with n=20 and d=12;
8 traces and 8848 sol 1042 traces and 131596 sol 41515 traces and 16955181 sol

6 500 18000

450 _ 16000 -
400

350 A
300 -
250 A
200 A
150 A
100

1
50 2000 A H
0 i i i i ‘|_|‘ i 0 ﬂ‘ ‘n‘ -_— 0 o

0 e i e A
123456 78 9101112

width width width

14000 -
12000 -
10000 -

8000 -
6000 -
4000 A

number of occurrences of width
w

number of occurences of width

number of occurences of width

Figure 18: Distribution of the width of posets for 3 random permutations of size 20 and different reversal
distances (d =8, d = 10 and d = 12). For each permutation, we computed the traces of optimal sequences
and we calculated the number of occurrences of each width in the traces.

components of 7. However, when a permutation 7 has at most one unoriented component, no

optimal sorting sequence contains a merge reversal.

Proposition 4 If a permutation © has at most one unoriented component, no optimal sequence

sorting ™ contains a merge reversal.

Proof. Recall that the formula for the reversal distance is d(7) = pts(7) — cyc(n) + hrd(rw) +
frt(m). Since a merge reversal joins two cycles, it decreases cyc(m) by one. However, when a
merge reversal is used to eliminate a fortress, it decreases hrd(m) by one and frt(w) by one. A
merge reversal can also be used to merge two hurdles, and in this case it decreases hrd(m) by
two. If the permutation 7 has at most one unoriented component, frt(w) = 0 and hrd(r) < 1.
Thus a merge reversal applied to 7w can not decrease frt(m) and decreases hrd(w) at most by
one. Consequentely, if 7 has at most one unoriented component, no optimal sequence sorting m

contains merge reversals. O

Thus, if a permutation 7 has ¢ non-trivial components and at least ¢— 1 oriented components,
each optimal sequence s sorting 7 has only split and neutral reversals. Since each split or neutral

reversal affects one single component of 7 (Proposition 1 in Chapter 3), each optimal sequence

44

4.4. Component-specific reversals and trace composition

s sorting 7 can be partitioned in ¢ subsequences®, such that the length of s is the sum of the
lengths of its ¢ subsequences and each subsequence contains only reversals that are internal to

one non-trivial component of .

Proposition 5 Let 7 be a permutation with ¢ non-trivial components and at most one unoriented
component. Fach optimal sequence s sorting © can be partitioned in ¢ subsequences si, so, ...,
Se, where |s| = |s1]| + |s2| + ... + |sc| and each s; contains only reversals that are internal to the
ith non-trivial component of .

Proof. Let s = pipa...pq be an optimal sequence of reversals sorting 7, with d = d(7). The
permutation 7 has at most one unoriented component, thus s has only split or neutral reversals
(Proposition 4). Since each split or neutral reversal affects one single component of = (Propo-
sition 1 in Chapter 3), we can construct the component-specific subsequences s, s2, ..., S. as
follows. In the beginning, each s; is an empty sequence. Take each reversal py of s (k from 1 to d)
and concatenate pj to the sequence s;, corresponding to the i*” component of 7, that is affected
by pr- Each py is concatenated to exactly one subsequence s;, thus |s| = [s1| 4+ [s2| 4+ ... + [s¢]

and each s; contains only reversals that are internal to the i*” non-trivial component of 7. O

Observe that each reversal in a subsequence s; that sorts the " component commutes with
each reversal in a subsequence s;, that sorts the j th component, thus we say that the subsequences
s; and s; commute.

For example, the permutation 7 = (—4,—3,12,—11,-8,10,9,7,—6,—5,2, —1) has two non-
trivial oriented components, as we can see in Figure 19. We call C the first oriented component,
which contains the points (black edges) that are before —4, after —1 and between the values
(=3,12), (12,—11), (=5,2), (2,—1). The second oriented component is thus called Cy and
contains the points that are between the values (—11, —8), (—8,10), (10,9), (9,7) and (7, —6).
The points between the values (—4,—3) and (—6,—5) are adjacencies. One optimal sorting
sequence for 7 is s = {1,2}{8, 10}{2}{12}{7}{1,2,5,6,...,11,12}{1,2,3,4}{8,9}, that can be

partitioned in two subsequences s; = {1,2}{2}{12}{1,2,5,6,...,11,12}{1,2,3,4}, that sorts

8A “subsequence” of a sequence s is obtained by eliminating some of the elements (here reversals) of s while
preserving the order of the remaining elements.

45

Chapter 4. Traces of sorting sequences of reversals

C1, and s = {8,10}{7}{8,9}, that sorts Cs. It is easy to see that s; commutes with so. The

set of all traces sorting m is represented in Table 6.

=04 =037 412 =117-08" 410 +09™+077 =06 =05 T +02-01

Figure 19: The breakpoint graph of the permutation (—4,—3,12,—-11,-8,10,9,7, —6, —5,2, —1) with two
oriented components.

Trace Trace normal form # seq.
Lo f={1,2}{1,2,5,..., 12}{2}{7T}{8, 10}{12} < {1,2,3,4}{8,9} 10,080

2. f={1,...,12}{2}{3,4, 12}{5, ..., 11}{7}{8, 10} < {3,...,11}{8,9} 10, 080

3. F={1,..., 122, ..., 12}{2,5,.. ., 12}{7}{8, 10}{12} < {2,3,4}{8,9} 10,080

4. f={1,2}{7}{8,10} < {1,5,...,11}{8,9} < {1,3,4,12} < {2,...,12}{3,..., 11} 336

5. f={2,...,12}{7}{8,10} < {1.3,4,12}{8,9} < {1,5,...,11} < {1,2}{3,...,11} 336

6. f={25...,12}{5,..., 11}{7T}{8,10} < {1,12}{8,9} < {1,5,...,11} < {1,2,3,4} 840
Total 31,752

Table 6: The 31,752 optimal sequences of reversals for sorting (—4,—3,12,—11,—8,10,9,7, -6, —5,2, —1)
are distributed in 6 traces. Each trace is represented by its normal form. The third column indicates the
number of sequences in each trace.

Let 7 be a permutation with ¢ non-trivial components and at least ¢ — 1 oriented compo-
nents. Since each sequence sorting the i*” component commutes with each sequence sorting the
4% component of 7, we can group all sequences that sort one component of 7 in a set of traces.
We denote by 7; the set of all traces of sequences sorting the i*" component of a permutation 7.
Table 7 represents, for instance, the sets of traces 77 and 75 that sort respectively the compo-
nents C7 and Cy of the permutation (—4,-3,12,-11,-8,10,9,7, -6, —5,2,—1) (illustrated in
Figure 19).

Let T; € 7; be a trace of optimal sequences sorting the it" component of 7 and T; €7; bea

trace of optimal sorting sequences sorting the j** component of 7. We know that each sequence

46

4.4. Component-specific reversals and trace composition

Component C;

Trace Trace normal form # seq.
ok f=1{1,2}{1,2,5,...,12}{2}{12} < {1,2,3,4} 60
Cc? F={1,...,12}{2}{3,4,12}{5,..., 11} < {3, ..., 11} 60
c} F={1,...,12}{2,...,12}{2,5,...,12}{12} < {2,3,4} 60
cy F={1,2} <{1,5,...,11} < {1,3,4,12} < {2,...,12}{3,...,11} 2
c3 f=12,...,12} < {1,3,4,12} < {1,5,...,11} < {1,2}{3,...,11} 2
c$ F=12,5,...,12}{5,..., 11} < {1,12} < {1,5,...,11} < {1,2,3,4} 5

Total 189

Component Cy

Trace Trace normal form # seq.
C3 f={7}{8,10} < {8,9} 3
Total 3

Table 7: The traces of optimal sequences of reversals for sorting the components Cy1 and Cy of the
permutation (—4,—3,12,—11,-8,10,9,7, —6,—5,2, —1). Fach trace is represented by its normal form.
The third column indicates the number of sequences in each trace.

in T; commutes with each sequence in T}, thus we say that the traces T; and T; commute. We
denote by T; ® T; the multiplication of two traces T; and T}, defined as the set of all sequences
that are the result of all possible combinations of each sequence in 7; with each sequence in Tj.
Observe that T;®Tj is equivalent to 7;®T;. We denote by ||T;|| the number of sequences in a trace
T;, and by #¢; the length of each sequence of a trace T; (all sequences in all traces of 7; have the
same length ¢;). Then the number of sequences in T; ® Tj corresponds to ||T;|| * ||T;||* M (¢;, ¢;),
where M (4;,4;) is the number of possible ways to merge a sequence of length ¢; with a sequence
of length ¢;, such that the merged sequences are subsequences of all resulting sequences (it is
easy to see that M (¢;,¢;) is equivalent to M (¢;,¢;)). The normal form of the trace 7; ® T; can
be obtained by adding each reversal in the normal form of 7} to the normal form of T; with

Algorithm 3.

For example, if s; = p1p2 and so = 0105, then all possible ways of merging s; and so are the

6 sequences p1p2010a, p101p20a, p10102ps, O1p1p202, O1p102p2, and 0102p1p2. Thus, the number

47

Chapter 4. Traces of sorting sequences of reversals

M(2,2) is equal to 6. Moreover, consider the trace 71 = pip2 and the trace To = 6; < 0s.
Since T} has 2 sequences (p1p2 and pop1) and T has only one sequence (016), the number of
sequences in 71 ® T» corresponds to ||T1|| * |[T2|| * M (2,2) = 2% 1% 6 = 12. If we suppose that

0, is lexicographically higher than p; and po, then the normal form of 71 ® 15 is p1p261 < 0s.

We also denote by 7; ® 7; the multiplication of two sets of traces 7; and 7;, that sort
respectively the i'® and the j** components of 7, such that Z,® 7, = { T, T, | T; € T; and Tj €
7; }. If a permutation 7 has at most one non-trivial unoriented component, the set of traces
of optimal sequences sorting 7 can be obtained by the subsequent multiplication of the sets of

traces sorting its components.

Proposition 6 Let 7 be a permutation with ¢ non-trivial components and at most one non-trivial

unoriented component. If T is the set of all traces sorting m, then T = T1 QT ®...QT._1T,.

Proof. 1t is easy to see that any trace in 71 8 72 ®...® 7.1 ® 7, is also in 7. By contradiction,
we show that any trace in 7 is also in 71 ® o ® ... ® 7.1 ® 7.. Suppose a trace T € T
that isnot in 71 7o ® ... ® 7._1 ® 7.. Since 7w has at most one unoriented component, each
optimal sequence s € T sorting m can be partitioned in ¢ subsequences si, so, ..., S, where
|s| = |s1|+]|s2|+. ..+ |s| and each s; contains only reversals that are internal to the i*" non-trivial
component of m (Proposition 5). Thus T'isin 71 ® 75 ® ... ® 7.1 ® 7., which is a contradiction.

O

Table 8 shows the multiplication of the sets of traces sorting the components C; and Cs of the
permutation 7 = (—4,-3,12,-11,-8,10,9,7, —6, —5,2, —1) to generate all the traces sorting .

When we compute directly the traces that sort a permutation 7, the traces of each component
of m are computed several times. In contrast, when we compute and multiply the traces of the
components to obtain the traces that sort a permutation m, the traces of each component are
computed once. Thus, computing and multiplying the traces of the components to obtain the
traces that sort a permutation m may be more efficient than computing directly the traces, and

this is confirmed by the experimental results, as we will see in the next section.

48

4.5. Implementation and performance

Trace Trace composition and normal form # seq.
clect {73{8,10} < {8,9} ® {1,2}{1,2,5,...,12}{2}{12} < {1,2,3,4} 3 ® 60 = 10,080
f=1{1,2}{1,2,5,..., 12}{2H{7}{8, 10}{12} < {1,2,3,4}{8,9} (3% 60 % M(3,5))

Ci®C?2 {7}{8,10} < {89} ®{1,....12}{2}{3,4,12}{5,...,11} < {3,...,11} 3 ® 60 = 10,080
F={1,...,12}{2}{3,4,12}{5,. .., 11}{7}{8, 10} < {3,...,11}{8,9} (360 % M(3,5))

ci®cC} {73}{8,10} < {8,9} ®{1,...,12}{2,...,12}{2,5,..., 12}{12} < {2,3,4} 3 ® 60 = 10,080
F=1{1,...,12}2,...,12}{2,5,..., 12}{7}{8, 10}{12} < {2,3,4}{8,9} (360 % M(3,5))

Cloot {7}{8,10} < {8,9} ® {1,2} < {1,5,...,11} < {1,3,4,12} < {2,...,12}{3,..., 11} 3®2=2336
F={1,2{7}{8,10} < {1,5,...,11}{8,9} < {1,3,4,12} < {2,...,12}{3,...,11} (3% 2% M(3,5))

Ci®CP {7}{8,10} < {8,9} ®{2,...,12} < {1,3,4,12} < {1,5,...,11} < {1,2}{3,...,11} 3®2=2336
F=12,...,12}{7}{8,10} < {1,3,4,12}{8,9} < {1,5,...,11} < {1,2}{3,...,11} (3% 2% M(3,5))

Ci®C% {7}{8,10} < {8,9} ® {2,5,...,12}{5,..., 11} < {1,12} < {1,5,...,11} < {1,2, 3,4} 3®5 =840

f=12,5...,12}{5,..., 11}{7}{8,10} < {1,12}{8,9} < {1,5,...,11} < {1,2,3,4} (3% 5% M(3,5))

Total 31,752
(567 « M(3,5))

Table 8: Obtaining the traces of sequences of reversals for sorting the permutation
(—4,-3,12,-11,-8,10,9,7,—6,—5,2,—1) by the composition approach. The value M (3,5) is equal to
56.

4.5 IMPLEMENTATION AND PERFORMANCE

The implementation of our algorithm to generate directly the traces? is part of the BAOBABLUNA
package, described in Chapter 6. We run several tests on artificial permutations to evaluate the
algorithm’s performance. Some results are recorded in Table 9. These numbers may be useful to
give an idea of the quantities that we are dealing with, given by the numbers of sorting sequences

and number of traces.

Even if we are quickly limited in the size of the permutations that it is possible to treat,
there is a solid gain in relation to the previous existing methods. Observe that the main limit
concerns the amount of memory that needs to be used, more than the time. In the next chapter,
we present a method to deal with this problem that consists in pruning the sequences of reversals

according to some biological constraints.

9Since fortresses are very rare in permutations that represent real genomes, the implementation of the algorithm
does not deal with fortresses.

49

Chapter 4. Traces of sorting sequences of reversals

PERMUT. Ne Ng Np Algorithm Execution time
TR enum seq. ~ 13.5 min
n =12 2 8,278, 540 2,151 enum+traces ~ 30.1 min
d=10 (149) (827,854 % M(1,9)) traces ~ 27 sec

traceCompos =~ 13 sec

TG enum seq. ~16 h
n =16 2 505, 634, 256 21,902 enum+traces ~ 43.5 h
d=12 (1+411) (42,136, 188 « M(1,11)) traces ~ 7.3 min
traceCompos =~ 3.2 min
TH enum seq. -
n =16 2 40, 313,272, 766 567,524 enum+traces -
d=13 (1412) (3,101,020,982 * M(1,12)) traces ~ 4.1 hours
traceCompos ~ 1.7 hours

Table 9: Computation results (1). Columns from left to right contain: 1- the permutation, its
number of elements and reversal distance; 2- the number of components and how the reversal dis-
tance is divided between components; 8- the number of sorting sequences (in parenthesis the num-
ber of sorting sequences computed by traceCompos); /- the number of traces; 5- the algorithm
(enum seq is the algorithm that enumerates all the sorting sequences, enum+traces is the algo-
rithm that computes the traces by enumerating all sorting sequences, traces is Algorithm 5, that
enumerates directly the traces, traceCompos is the algorithm that composes a trace of a permu-
tation ® by multiplying the traces of the components of ©); 6- the execution time of each algo-
rithm. The three analyzed permutations are n7p = (—12,11,-10,6,13,-5,2,7,8,-9,3,4,1), 7¢ =
(-12,11,-10,-1,16,—4,—3,15,—14,9, -8, -7, -2, 13,5, —6), and finally the permutation ©y =
(—-12,11,-10,6,—5,13,2,7,8,—9,14, —15,3,4,—16, 1), that can not be processed by the algorithms enum
and enum+traces due to its huge number of sorting sequences. All algorithms are implemented as part
of the BAOBABLUNA package.

4.6 FINAL REMARKS

In this chapter we presented the method previously proposed by Siepel [59] to generate the space
of all sorting sequences for a given permutation w. Then we gave one of our most important
contributions, that is a method for generating directly a more compact representation of the
space of all sorting sequences, in which the sequences are grouped in equivalence classes called
traces, using a model previously proposed by Bergeron et al. [9]. We showed that the theoretical
complexity of our algorithm is exponential on the width (represented by k), that is a property

of the resulting traces.

The algorithm was implemented, integrated to BAOBABLUNA, a framework to deal with per-
mutations and reversals, that will be described in Chapter 6. The experimental results show

that the number of traces is considerably smaller than the number of sorting sequences. Con-

50

4.6. Final remarks

sequently, computing directly the traces runs considerably faster than computing all sequences.
However, the number of traces may be still too big for being interpreted, and in some cases,
too big for being computed. Indeed, we verified that currently we are unable to compute traces
for permutations with a reversal distance of about 20 or higher. Nevertheless, for small reversal
distances, which is the case of a permutation analyzed by Ross et al. [55] in the study of the
evolution of human sexual chromosomes X and Y, and of the permutations analyzed by Blanc
et al. [13] in the study of the evolution of Rickettsia bacteria, as we will see in the next chapter,
our program may give a more interesting result than programs that give a unique solution, such
as GRIMM [64].

We also showed that, for any permutation 7 that has at most one unoriented component,
we can compute the set of traces that sort each component of 7 independently, and then obtain
the traces sorting 7 by multiplying the traces sorting its components. This approach runs faster
than computing directly the traces.

In the next chapter we will introduce the use of some biological constraints in the enumeration
of traces, to reduce the universe of generated traces, that is however not compatible with the

strategy of constructing traces by composition.

51

Chapter 4. Traces of sorting sequences of reversals

52

Chapter 5

Biological constraints and applications

Summary

5.1 Modeling traces with biological constraints 54
5.2 Common intervals i eie e 55
5.2.1 Initial detection of common intervals 57
5.2.2 Progressive detection of common intervals 58
5.2.3 Theoretical complexity and experiments 61
5.2.4 Accepting interval breaks Lo Lo 64
5.3 Replication origin and terminus in prokaryotic circular chromosomes 65
5.3.1 Analysis of the Rickettsia bacterium 70
5.3.2 Evaluating the execution time, 75
5.4 Stratification on evolution of sexual chromosomes 75
5.4.1 Model of evolution by strata oL oL 7
5.4.2 Algorithm for exploring the sequences that stratify a permutation 78
5.4.3 Analysis of theresults oL 79
5.4.4 On the execution time of the strata variant 82
5.4.5 A deeper study of the human X and Y sexual chromosomes 82
5.4.5.1 Analysis of strata in extended permutations 83
5.4.5.2 Simulations to estimate the stratification likelihood 84

5.5 Symmetry versus asymmetry when applying constraints 88
5.6 Compatibility between constraints 89
5.7 Finalremarks 0 o e e e e 90

The space of sorting sequences is dramatically reduced when dealing with traces, but it is
often still too big and can not be computed. Even when it can be computed, frequently it is too
big to be handled by biologists on large permutations. An idea to try to solve these problems is

to add further biological constraints to reduce the number of traces. In order to be able to also

93

Chapter 5. Biological constraints and applications

reduce the amount of required memory and push further the limits of our algorithm, we may
check the constraints during the computation of traces, and not only a posteriori. We should be
able to filter the reversals at each step, selecting only those that are in agreement with the given
constraints.

We considered several different biological constraints. One of these constraints is the list of
common intervals detected between the two initial permutations, that may correspond to the list
of clusters of co-localised genes between the considered genomes - an optimal sequence of reversals
that does not break the common intervals may be more realistic than one that does break [26].
This approach was previously used in other studies that take common intervals in consideration
when sorting by reversals [6, 7, 10, 26]. We used the common intervals initially detected as
a constraint and we also proposed a new variation of this approach, that is the list of common
intervals progressively detected when sorting one permutation into another by reversals. Other
constraints were defined according to the practical problems we were interested in. In particular,
we are able to characterize the reversals with respect to the replication terminus in circular
chromosomes (this method was used to analyze the evolution of the Rickettsia bacterium), and
to apply a constraint to analyze directly the stratification process in the evolution of the sexual
chromosomes X and Y in human [18, 41].

All variants of the algorithm to generate traces taking biological constraints in consideration
are implemented as part of BAOBABLUNA, that will be described in Chapter 6. The experimental
results show that the number of traces is considerably reduced when the biological constraints are
applied. Consequently, these variants run faster than the algorithm that generates all the traces
(all experiments were made on a 64 bit personal computer with two 3GHz CPUs and 2GB of
RAM). As mentioned, we applied our methods to analyze two real cases, the evolution of sexual
chromosomes X and Y and the Rickettsia bacterium, obtaining a better characterization of these

evolutionary scenarios than previous studies, that were based on a single sorting sequence.

5.1 MODELING TRACES WITH BIOLOGICAL CONSTRAINTS

Besides two signed permutations 7 and 77, this method requires a list of compatible ¢ constraints

C = (C1,Cs,...,C,) for selecting the sequences that sort 7 into m7. We search for traces of

o4

5.2. Common intervals

sorting sequences that are in agreement with the given constraints. However, frequently only a
subset of the sorting sequences of a trace is in agreement with the constraints in C, and this
subset is called a C'—induced subtrace. The trace construction remains unchanged, but, as a
consequence of the selection of the reversals to be performed, we in fact construct the C'—induced
subtraces, that compute only the sorting sequences that are in agreement with all the constraints
in C'. The result of applying this method is the complete set of non-empty C'—induced subtraces
and their sizes for the two given permutations and a list of constraints C. Generally we have
no guarantee that a sorting sequence that respects all constraints exists, thus we may have an
empty result.

Moreover, frequently the normal form of a trace T is not part of its C—induced subtrace t. Due
to this, when constructing C'—induced subtraces, we also give at least one valid representative of
each C'—induced subtrace t, besides the normal form of the trace T' that contains t. A C—induced
subtrace ¢ can be thus represented by a 2—tuple (e, f), where e is any sorting sequence in ¢ and
f is the normal form of the trace 7" that contains t.

We analyzed qualitatively how the constraints may affect the chronology of the reversals,
showing that some of these constraints lead to symmetric (when the results of sorting a permu-
tation 7 into a permutation 77 can be obtained from the results of sorting 7 into 7) and others
lead to asymmetric approaches. Analogously to the notation used with traces, for a given subtrace
t of optimal sequences sorting 7 into mp, we define the inverse of ¢ as inv(t) = { inv(s) | s €t }).
A list of constraints C' is said to be symmetric when we have a C'—induced subtrace t sorting «
into 7 if, and only if, inv(t) is also a C'—induced subtrace sorting mr into m. Otherwise, C' is

said to be asymmetric.

5.2 COMMON INTERVALS

Clusters of co-localised genes are intervals of the genomes composed by the same genes but
not necessarily in the same order and orientations. These clusters are modeled as common
intervals. The common intervals of two permutations m and np are the intervals of mw that
are present in mp. For example, the interval {2,3,...,7,8} is common to the permutations

m=(-5,-2,-7,4,-8,3,6,—1) and Zg = (1, 2,3,4,5,6,7,8). The idea behind common intervals

95

Chapter 5. Biological constraints and applications

is that, if these genes are together in both species, then probably they were together in the
common ancestor of the two species and were not separated by evolution.

A reversal p breaks an interval 6 if p and 0 overlap. Considering, for instance, the permuta-
tion (—5,—-2,-7,4,-8,3,6, 1), we observe that the reversal {1,3,4,6,7,8} breaks the interval
{2,...,8}. We say that all intervals with size equal to 1 and the interval with size n, that com-
prises the entire permutation, are trivial common intervals (observe that a reversal never breaks
a trivial common interval).

The concept of irreducible common intervals has been introduced by Heber and Stoye [34].
The authors observed that any common interval may contain several smaller common intervals,
and defined as #rreducible common interval a common interval that does not contain any other
common interval different from itself. Then, the authors showed that any common interval 6
between two permutations 7 and 71 has a generating chain of irreducible intervals (y1,v2, - - ., V&),
such that the irreducible intervals 71, 7o, ..., 7% are listed in lexicographic order, and, for each
pair of consecutive irreducible intervals v;,7v;+1, we have v; N y41 # 0. A reducible common
interval is a common interval whose generating chain has length at least two, otherwise the
common interval is irreducible. For example, the generating chain of the reducible common
interval {1,2,3} between the permutations (—3,2,1,—4) and Z, is ({1,2},{2,3}) (the common
intervals {1,2} and {2,3} are irreducible). Testing whether a reversal breaks an irreducible

common interval is sufficient to determine whether it breaks a common interval.

Proposition 7 A reversal p breaks a reducible interval 0, if, and only if, p breaks at least one

irreducible interval in the chain that generates 0.

Proof. It is easy to see that breaking a irreducible interval in the chain that generates a reducible
interval 6 also breaks . Since each pair of consecutive irreducible intervals in the chain that
generates 0 have a non-empty intersection, breaking 6 breaks at least one irreducible interval in
the chain that generates 6. O

As a consequence of Proposition 7, if p does not break any irreducible interval between two
permutations m and 77, then p does not break any reducible interval between 7 and 7 as well.
While the number of common intervals is bounded by n?, the number of irreducible common

intervals is bounded by n [34], where n is the size of the input permutations.

56

5.2. Common intervals

5.2.1 Initial detection of common intervals

Common intervals between genomes have been the topic of several studies [6, 7, 10, 26].
Nevertheless, in the comparison of two permutations, the detection of common intervals is usually
done at the beginning of the analysis, an approach that we call initial detection of common
intervals. An optimal sequence of reversals sorting a permutation 7 into 7 that does not break
any (irreducible) common interval initially detected between 7 and 7r is called a perfect sorting

sequence. Figure 20 shows a non-perfect and a perfect optimal sequences of reversals.

(A) (B)

5 -2 -7 +4 -8 +3 +6 -1 =5 -2 -7 +4 -8 +3 +6) -1
-5 -2 +1 -6 -3 +8 -4 +7 =3 +8 -4 +7 +2 +5 +6] -1
-5 -2 +1 +4 -8 +3 +6 +7 -8 +3 -4] +7 —_2 +5 +6 -1
-3 +8 -4 -1 +2 45 +6 +7 8 +3 42 -7 +4 +5 46| -1
-3 -2 +1 +4 -8 +5 +6 +7 +1 (-6 -5 -4 +7 |-2 -3| +8
-3 -2 —_1 +4 -7 -6 -5 +8 +1 +2 -7 +4 +5 +6 -3 +8]
=3 -2 -1 +4 +5 +6 +7 +8 +1 +2 -7 -6 -5 -4 -3 +§|
+1 @-2 +3 +4 +5 +6 +7 +8] +1 El-2 +3 +4 +5 +6 +7 +8]

Figure 20: The permutations (—5,—2,—7,4,-8,3,6,—1) and (1,2,3,4,5,6,7,8) have only one initially
detected irreducible common interval, which is {2,...,8}. (A) The reversals {1,3,4,6,7,8}, {3,4,6,8},
{1,...,5,8}, {1,2,4,8}, {1}, {5,...,8}, {5,6,7} and {1,2,3} sort the permutation, but do not preserve
the initially detected common interval. (B) The sequence of reversals {2,...,5,7,8}, {3,8}, {2}, {2,4,7},
{1,...,8}, {2,4,...,7}, {4,5,6} and {3,...,7} is a perfect sorting sequence that preserves the initially
detected common interval, but does not preserve the new common intervals that appear during the sorting
process (such as {3,4} and {2,3}).

We analyze the behaviour of traces with respect to sequences that do not break the initially
detected common intervals [18]|. First, we remark that either all sequences of a trace do not
break common intervals initially detected, or all sequences of a trace break at least one common

interval initially detected.

Proposition 8 Every trace of optimal sequences for sorting a signed permutation by reversals

contains either only perfect sorting sequences or no perfect sorting sequence.

Proof. 1If any sequence s = p; ... p for sorting a permutation 7 is perfect, by definition none

o7

Chapter 5. Biological constraints and applications

of p1,..., pr overlap some common interval of 7. So any sequence with the same reversals in a
different order is perfect. This is the case for all the sequences of a trace, so if one sequence of a

trace is perfect, they all are. O

Due to this property, a trace that contains perfect sorting sequences of length d() is called
a perfect trace (the normal form of a perfect trace is thus a perfect sorting sequence). Such a
trace does not always exist: all optimal sequences may break common intervals (see [26]).

In addition, given two permutations m and 7r, we observe that searching for perfect traces
is a symmetric approach. Indeed, since the list of common intervals do not change when the
reversals are applied, if s is a perfect sequence of reversals s that sorts 7 into 77, then inv(s) is
a perfect sequence of reversals that sorts 7 into .

To compute the perfect traces, we need to introduce a few modifications to the original
algorithm. We should first compute the initial irreducible common intervals between the two
given permutations. Then, each time we compute the 1—sequences with Siepel’s algorithm, we
need to verify whether each one of the resulting 1—sequences breaks or not an irreducible common
interval (the 1—sequences that break irreducible common intervals are simply discarded). At the
end, we have only the perfect traces, if at least one perfect trace exists. If no perfect trace exists
for the given permutations, we have an empty result.

For comparison purposes, the experimental results of applying this method will be presented

together with the results of the next method.

5.2.2 Progressive detection of common intervals

In the previous approach, the new common intervals that could appear between an intermediary
permutation, after applying some reversals to the initial permutation, and the target permu-
tation, are not considered. Thus, if a common interval appears between an intermediary per-
mutation and the target permutation, there is no constraint on the selection of a reversal that
breaks this new interval (see Figure 20 (B)). Alternatively to the initial detection, in this work
we introduce the progressive detection of common intervals [17], that consists in updating the
list of (irreducible) common intervals between the permutations after each reversal. An optimal

sorting sequence that does not break the progressively detected irreducible common intervals is

o8

5.2. Common intervals

called progressive perfect sorting sequence. Figure 21 shows an example of this approach.

Descendant
=5 =2 =7 +4 -8 +3 +6 -1

-5 -4 +7 +2 -8 +3 +6 -1
=7 +4 +5 +2 -8 +3 -6 -1

-7 +4 +5 +6 -3 +8 -2 -1

+1 +2 -8 +3 -6 -5 -4 +7

+1 +2 -8 -7 +4 +5 +6 -3

+1 +2 +3 -6 -5 -4 +7 +8

+1 +2 +3 +4 +5 +6 +7 +8

N
Ancestor

Figure 21: An optimal sequence of reversals to sort the permutation (—5,—2,—7,4,-8,3,6, —1) without
breaking the progressively detected irreducible common intervals (listed on the right side).

If we consider the progressive detection of common intervals in the construction of traces,
Proposition 8 does not hold anymore. Considering the permutation (—5, -2, 7,4, -8,3,6,—1),
for instance, the sequences of reversals {2,...,5,7,8}, {3,8}, {3,4,7}, {1,...,8}, {2}, {4},
{2,3,4}, {2,...,6} and {3,8}, {3,4,7}, {2,...,5,7,8}, {1,...,8}, {2}, {4}, {2,3,4}, {2,...,6}
are in the same trace but, while the first preserves the progressively detected common intervals
(as we can see in Figure 21), the second does not (after applying the two first reversals, {3, 8}
and {3,4,7}, we have the permutation (-5, —2,3,—4,7,8,6) with the common interval {6,7,8}
which overlaps with the third reversal, {2,...,5,7,8}). Thus, when we take the progressively
detected common intervals in consideration, for each trace, only a subset of its sorting sequences
is selected. We call this subset a progressive perfect subtrace.

In addition, inverting a progressive perfect sorting sequence that sorts a first into a sec-
ond permutation generally does not result in a progressive perfect sorting sequence that sorts
the second permutation into the first. An example is given in Figure 21. Observe that, ap-
plying the last reversal {4,5,6} on the permutation (1,2,3,4,5,6,7,8) results in the permuta-
tion (1,2,3,—6,—5,—4,7,8), that has the common interval {4,7,8} with respect to the per-

mutation (—5,—2,—7,4,—8,3,6,—1). The reversal {3,...,7} (the third from bottom to top

99

Chapter 5. Biological constraints and applications

in Figure 21) overlaps with {4,7,8}, thus inverting the progressive perfect sequence of rever-
sals {2,4,7}, {4,5,7}, {6}, {2,3,6,8}, {1,...,8}, {3,...,7}, {3,...,8}, {4,5,6} that sorts
(—=5,—-2,-7,4,-8,3,6,—1) into (1,2,3,4,5,6,7,8) does not result in a progressive perfect se-
quence of reversals that sorts (1,2,3,4,5,6,7,8) into (—5,—2,-7,4,-8,3,6,—1). Thus, differ-
ently from searching for perfect traces, searching for progressive perfect traces is an asymmetric
approach.

When we compare current species, it is not possible to determine a direction to the analysis.
In this case, considering common intervals that appear in intermediary states is meaningless
and a symmetric approach is more adequate. Symmetry is thus an advantage that supports the
initial detection of common intervals in many applications. We suggest however that, when the
relation ancestor-descendant between the analyzed genomes is clear, the progressive detection of
common intervals may be more realistic than the initial detection of common intervals. In this
case, the analysis should be done from the descendant to the ancestor, since the objective is to
regroup intervals that may have existed in a past time.

To construct the progressive perfect subtraces, we need to modify Algorithm 5. Analogously
to the notation previously introduced, a progressive perfect subtrace whose sorting sequences
have i reversals is called progressive perfect i—subtrace, and a progressive perfect k—subtrace ¢’
is a k—prefiz of a progressive perfect i—subtrace t (k < i) if each k—sequence of ¢’ is a prefix of an
i—sequence of t. To compute the progressive perfect subtraces, at each step we use the algorithm
of Siepel [59] to list all possible 1—sequences. Then we filter these 1—sequences to discard those
that break irreducible common intervals. As a result of this procedure (see Algorithm 6), we
construct directly the progressive perfect subtraces.

As in the original algorithm, we may need to compare subtraces to verify whether a new
subtrace t is present in the list of already constructed subtraces (Algorithm 6, step COMPAR-
ISON). In order to do that, we may obtain the normal form f of the trace T that contains t,
and compare f to the normal forms of the traces that contain the already constructed subtraces
(the normal form of an i—trace is constructed incrementally, from the normal form of one of its
(1 — 1)—prefixes; see Algorithm 3). Since there is no guarantee that the normal form is part of a
progressive perfect subtrace, we also give one arbitrary valid sorting sequence in ¢ as a represen-

tative (the representative of an i—subtrace is also constructed incrementally, by concatenating

60

5.2. Common intervals

a reversal in the end of the sequence that represents one of its (i — 1)—prefixes). A progressive
perfect subtrace ¢ is thus represented by a 2—tuple (e, f), where e is any progressive perfect
sorting sequence in t and f is the normal form of the trace T' that contains .

The sequence {1,...,8}{2,4,7}{6} < {2,3,6,8}{4,5,7} < {3,...,7H3,...,8}{4,5,6} is the
normal form of the sorting sequence described in Figure 21. The normal form is not a progressive
perfect sequence, because after applying the reversals {1,...,8}, {2,4,7}, {6} and {2,3,6,8} on
the permutation (—5, —2, 7,4, —8,3,6, —1) we obtain the permutation (1,2, 8,3, -6, —-7,4,5),
that has the irreducible common interval {6, 7} with respect to the target permutation Zg =
(1,2,3,4,5,6,7,8). The next reversal in the normal form is {4, 5, 7}, that breaks this new interval.
In this example, the normal form is not a valid representative. However, the progressive perfect
subtrace that contains the sorting sequence described in Figure 21 can be represented by the
2—tuple (e, f), where e is a valid progressive perfect sequence representative) and f is the normal

form (see Table 10).

2-tuple

={2,4,7H4,5,7}{6}{2,3,6,8}{1,...,8}{3,...,T}{3,...,8}{4,5,6}
={1

; v 8H2,4, 76} < {2,3,6,81{4,5,7} < {3,...,7}{3,...,8}{4,5,6}

Table 10: The 2-tuple representing one progressive perfect subtrace of optimal sequences that sort the
permutation (—5,—2,—7,4,—8,3,6,—1).

Thus, for two given permutations 7 and 7, at the end of Algorithm 6, we have the list of
all non-empty progressive perfect subtraces. If no progressive perfect sequence exists for sorting

7 into 77, we have an empty result.

5.2.3 Theoretical complexity and experiments

As we have seen before, Algorithm 5 has complexity O(NnFmez+4) where n is the size of the
input permutation 7, N is the number of computed final traces and k4, is the maximum value
for the width of a final trace. The 4 in the exponent of this formula is due to the processing of
each (i — 1)—trace T to generate the subsequent i—traces, given by the following procedure: (1)
apply the sequences of reversals of f, which is the normal form of 7', on the initial permutation =

to obtain 7f; (2) run Siepel’s algorithm [59] over mf; (3) add each one of the O(n?) reversals

61

Chapter 5. Biological constraints and applications

Algorithm 6 Enumerating all the progressive perfect subtraces of two signed permutations

Input: Two signed permutations =, 7p

Output: The representative, normal form and counter (e, f,c¢) of each progressive perfect subtrace of
sequences of reversals sorting 7 into mp

d « reversal distance of (m,7r)
T 0
I — {0 @1is airreducible common interval between 7 and 7} [computing irred. common interv. [34]]
S «— {p | pis an optimal 1—sequence for 7 — w1} [Siepel [59]]
for each 1—sequence p € S do
if p does not break an interval in I [filtering] then
insert (p,p,1) in 7 [each perfect first 1—sequence is a progressive perfect 1—subtrace]
end if
end for
for each integer i from 2 to d do
T’ « (0 [contains the representatives/normal forms/counters of all the progressive perfect
i—subtraces]
for each (e, f,c)in 7 |[(e, f) repr. the prog. perfect (i — 1)—subtrace ¢; ¢ is the counter of | do
wg«—mo f [apply the (i — 1)—sequence f to 7]
I; — {0 | 0 is a irreducible common interval between 7; and w7} [comp. irred. common
interv. [34]]
Sy — {p | pis an optimal 1—sequence for 7y — wr} [Siepel [59]]
for each 1—-sequence p € Sy do
if p does not break an interval in I; [filtering] then
fo— [+ p [extend the normal form f by adding the reversal p; see Algorithm 3]
if there exists (¢, f’,¢') € T’ such that f' = f, [COMPARISON] then
¢« +¢ [upd. the counter of the progressive perfect i—subtrace ¢’ repr. by (¢’,)]
else
e, < e-p [simply concatenate p to the sequence €]
insert (e,, fy,¢) in 7’ [(e,, f,) repr. the prog. perfect i—subtrace t,; ¢ is the counter of
£
end if
end if
end for
end for
T T
end for
return 7 |7 is the final set of progressive perfect d—subtraces sorting 7 into 77|

returned by Siepel’s algorithm to 7" to compute a new i—trace. The complexity of this procedure
is (1) + (2) + (3) = n? + n?® + n?.n?, that results in O(n?).

With respect to the original algorithm, in order to compute progressive perfect subtraces
we added two new steps to the processing of an (i — 1)—subtrace t to generate the following
i—subtraces: (1B) computing the irreducible common intervals in 7¢; (2B) filtering each reversal
returned by Siepel’s algorithm. Computing the irreducible common intervals can be done in
O(n) time [34]. Filtering the reversals, that is, testing whether each one of the O(n?) reversals

returned by Siepel’s algorithm overlaps with each one of the irreducible common intervals can

62

5.2. Common intervals

take n2.n.n, because comparing two intervals (a reversal and a common interval) takes O(n) and
each reversal has to be compared to O(n) [34] irreducible common intervals. Thus, the complexity
of processing an (i — 1)—subtrace is given by (1)+ (1B) + (2)+ (2B) + (3) = n2+n+n+n*+n4,
that results in O(n*). Consequently, the complexity of the modified algorithm is O(LnFmast4),

where L is O(IN) and represents the number of computed final progressive perfect subtraces.

Observe that, for calculating perfect traces, we compute the irreducible common intervals
once for the input permutation m, and then we only have to introduce the filtering step, whose
complexity is O(n*), in the original algorithm. Thus, the theoretical complexity in this case is

O(MnkFmaz+4) " where M, the number of computed final perfect traces, is also O(N).

We implemented both algorithms, to compute perfect traces and progressive perfect sub-
traces, integrated to the BAOBABLUNA package (described in chapter 6), which also contains the
implementation of computing traces. Although the theoretical complexity of the new approaches
is equal to the original approach, the experimental results, presented in Table 11, revealed that
searching for reversals that do not break common intervals is a constraint that usually reduces
the number of traces and sorting sequences, and consequently, the execution time. Moreover, the
reduction is considerably higher when we apply the progressive detection of common intervals

(usually L < M << N).

Permutation Algorithm Ng Nt Execution time
all traces (A < I3g) 81, 869 377 ~ 5 seconds
A and Ty perfect traces (A «— Ig) 51, 304 92 ~ 5 seconds
d(A,Ig) =8 p- perf. subtr. (A — I3g) 11, 568 12 ~ 3 seconds
p- perf. subtr. (Zg — A) 8,400 5 ~ 2 seconds
all traces (B < Zi6) 505,634,256 21,902 ~ 7.3 minutes
B and Zis perfect traces (B < ZIi5) 122,862,960 171 ~ 27 seconds
d(B,T16) =12 p. perf. subtr. (B — Zig) 5,963, 760 6 ~ 14 seconds
p. perf. subtr. (Zi;6 — B) 5,393, 520 9 ~ 16 seconds
Table 11: The experimental results of computing traces, perfect traces and progres-
sive perfect subtraces (in both directions), considering the pairs of permutations given
by (A,Zg), where A = (=5,-2,-7,4,-8,3,6,—1), and by (B,I15), where B =

(—-12,11,-10,-1,16,—4,—3,15,-14,9, -8, -7, —2, 13,5, —6). All algorithms are part of the
BAOBABLUNA package.

63

Chapter 5. Biological constraints and applications

5.2.4 Accepting interval breaks

As mentioned, searching for perfect traces or for progressive perfect subtraces may reduce the
number of sorting sequences and traces. However, there is no guarantee that a perfect sorting
sequence or a progressive perfect sorting sequence exists, thus those approaches may eventually
lead to empty results. For example, the permutation (1,3,—-2,—11,5,—-9,-10,8,6,—7,—4,12),
whose reversal distance is 9, has no perfect sorting sequence and no progressive perfect sorting

sequence.

Due to this, we propose the construction of near-perfect traces, accepting a bounded number
of breaking reversals per trace. A reversal can have a score of 0 if it does not break any common
interval, or a score of 1 if one of its extremities breaks common intervals, or of 2 if both extremities
break common intervals (see Figure 22 (B)). The score of a sequence of reversals is given by the

sum of the scores of its reversals and is bounded by k.

Differently from the perfect sequences, the near-perfect sequences of reversals are asymmetric,
that is, inverting a near-perfect sequence of reversals sorting a permutation 7 into 77 with score
equal to k£ does not necessarily result in a near-perfect sequence of reversals sorting 7 into =
with the same score k. The reason is that, after being broken, a common interval is no longer
common and should be removed from the initial list of common intervals (see Figure 22 (A)).
Thus, the list of common intervals may be different at each step and depends on the order the

reversals are applied.

For example, when sorting (1,3, -2, —11,5, -9, -10,8,6, 7, —4, 12) into Z15 there is no per-
fect sequence of reversals, and we must accept at least two interval breaks. The irreducible
common intervals between these two permutations are {1,2,3}, {2,3}, {2,...,11}, {2,...,12},
{4,100, {4, ..., 11}, {4,..., 12}, {5,..., 10}, {5, ..., 11}, {5,.... 12}, {5,..., 11}, {5,..., 12},
{6,7}, {6,7,8}, {6,7}, {8,9,10}, {9,10}. To construct a sequence of score 2, we can first ap-
ply the non-breakings reversals {2,3}, {3}, {4,...,11}, {5,...,10}, {7} and {9} and obtain
(1,2,3,4,5,9,-10,8,6,7,11,12). Then we apply the reversal {6,7,8,10}, with score equal to
one, that breaks the intervals {8,9,10} and {9,10}. The next reversal is {6,7,9}, that breaks
the interval {6,7,8} and also has score equal to one. Then the last reversal is {8,9}, which is

non breaking. But observe that if we do not remove the already broken intervals from the initial

64

5.3. Replication origin and terminus in prokaryotic circular chromosomes

list, the last reversal should be considered a breaking one (it also “breaks” the interval {9,10}),
and this sequence would have a score of 3 instead of 2.

A consequence of updating the list of common intervals when we accept a number of interval
breaks bounded by k is that we have near-perfect subtraces instead of traces. Similarly of what
happens when we use the progressive detection, only a subset of the sequences in a trace may
achieve the given score k, and this process is not symmetric. Thus, when we accept interval
breaks, we are not able to keep the symmetry. In other words, although the perfect traces are
symmetric, the near-perfect subtraces are asymmetric and this should be taken in consideration
when we apply this method in the analysis of real cases.

We can also accept interval breaks when searching for progressive perfect subtraces. As for

the progressive perfect subtraces, the progressive near-perfect subtraces are also asymmetric.

(A) (B)

 — (interval break)

+3 -2 -4 +6 +5 -1

{interval break) = (one interval break)

+3 -2 +1 -5 -6 +4

-1 42 -3 =5 -6 +4 —_— (two interval breaks)

Figure 22: (A) After being broken, an interval is no longer common. (B) A reversal may cause at most
two interval breaks.

In the next section we will see how the conservation of progressively detected common in-
tervals, accepting some interval breaks, can be combined with another constraint to analyze the
evolutionary scenario between the bacterium Rickettsia felis and one of its ancestors, that have

been reconstructed by Blanc et al. [13].

5.3 REPLICATION ORIGIN AND TERMINUS IN PROKARYOTIC CIR-
CULAR CHROMOSOMES
In prokaryotic circular chromosomes, it was observed that reversals are more likely to happen

symmetrically around the replication terminus; such a reversal is called terminus-symmetric

reversal. Thus, the other types of reversals, that we call erternal, when it does not contain

65

Chapter 5. Biological constraints and applications

neither the replication origin nor the replication terminus, and terminus-asymmetric, when it
happens asymmetrically around the replication terminus, are more rare than terminus-symmetric
reversals.

Although the existence of a mechanism that could favor the occurrence of terminus-symmetric
reversals remains a possibility [27], Mackiewicz et al. [42] showed several arguments that indicate
that natural selection plays an important role in this process. They observed that terminus-
symmetric reversals are the only that are able to preserve two important properties of a gene,
that are its distance with respect to the replication terminus and origin, and its orientation
with respect to the replication direction. The terminus-asymmetric reversals also preserve the
orientation of a gene with respect to the replication direction, but may displace the replication
terminus (analogously, replication origin). The external reversals do not affect the positions of
the replication terminus and origin, but may change the distance of a gene with respect to the
replication terminus and origin and also its orientation with respect to the replication direction.
Thus, according to Mackiewicz et al. [42], terminus-asymmetric and external reversals may often
lead to deleterious mutations. The three types of reversals are illustrated in Figure 23.

In general, terminus-symmetric reversals are not perfectly symmetric. If a reversal occurs
around the replication terminus, we can denote by a the distance between the first extremity of
the reversal to the replication terminus and by b the distance between the replication terminus
and the last extremity of the reversal. We define as terminus-symmetry rate the value between 0
and 1, given by the minimum of @ and b, divided by the maximum of a and b. We differentiate
terminus-symmetric and terminus-asymmetric reversals by a threshold on the terminus-symmetry
rate. Figure 24 illustrates the terminus-symmetric, external and terminus-asymmetric reversals.

We assume that the values of a permutation 7 = (71,79, ...,m,), that represents a circular
chromosome, are given according to the positions of the markers represented by my, 7, ..., m,
with respect to the replication origin (that is, if we do a tour on the chromosome from 5’ to
3’, m1 represents the marker that follows the replication origin, and so on, thus m, represents
the marker that precedes the replication origin). The same is valid for the target permutation
7. The length of the markers can be set (each marker is assumed to have the same length
in both genomes), and, since prokaryotic genomes are dense in genes, we may ignore the space

between markers. Then, the replication terminus is inferred to be exactly in the middle of the

66

5.3. Replication origin and terminus in prokaryotic circular chromosomes

4

\
.
\

'

[}

1

1

I

I

I}

/\'

Figure 23: With respect to the replication terminus, a reversal can be symmetric, asymmetric or external.
The rounded blue arrows indicate the replication directions. The red arrow over the chromosome represents
a gene that is within the portion of the chromosome that is affected by a reversal. (A) A terminus-
symmetric reversal preserves the distance of a gene with respect to the replication terminus and origin,
and its orientation with respect to the replication direction. (B) A terminus-asymmetric reversal preserves
the orientation of a gene with respect to the replication direction, but may displace the replication terminus
(analogously, replication origin). (C) An external reversal does not affect the positions of the replication
terminus and origin, but may change the distance of a gene with respect to the replication terminus and
origin and also its orientation with respect to the replication direction.

permutations 7 and 77, taking into account the length of the markers. For example, if we have

a permutation m = {1,2,3,4,5}, with the respective lengths 1, 1, 1, 3 and 2, then the replication

67

Chapter 5. Biological constraints and applications

orn
Tgr
Ter !
—a—+—b—
symmetry
ori [] rate (<1):
—_— min(a,b)
f/' T)Reversals
external asyn/|metric syn}mLtric ext\ernal max(a,b)

Figure 24: A threshold on the terminus-symmetry rate determines whether o reversal is terminus-
symmetric or terminus-asymmetric.

terminus is inferred to be at the position given by 1+ 1+ 143+ 2/2 = 4, that is, the replication

terminus is placed within the marker 4 (Figure 25).

ori Ter ori
|

OEEY s 5

Figure 25: The inferred position of the replication terminus in a circular chromosome. The circular
chromosome is represented by the permutation m = {1,2,3,4,5}, with the respective lengths 1, 1, 1, 3 and
2. The replication terminus is inferred to be at the position given by 1+ 14+ 1+ 3 +2/2 = 4, thus the
replication terminus is placed within the marker 4.

With these assumptions, we are able to detect whether a reversal is external or not. If a
reversal is not external, we can compute its terminus-symmetry rate and determine whether it is
terminus-symmetric or terminus-asymmetric. We can use the maximum number of external and
terminus-asymmetric reversals as a constraint to adapt the algorithm that generates the traces
of sorting sequences. Given a threshold r to the terminus-symmetry rate and two integers p and
q, we search for the sequences sorting m into mp that contain at most p external and at most
q terminus-asymmetric reversals, according to the threshold r to the terminus-symmetry rate.
Observe that if a reversal p has a status X in a sequence of reversals s sorting 7 into 7, there is
no guarantee that p has also status X in a sequence s’ that is equivalent to s (X can be external,

terminus-symmetric or terminus-asymmetric). An example is given in Figure 26.

68

5.3. Replication origin and terminus in prokaryotic circular chromosomes

o[[E (A 2 e

Ter

ori [[T 4] 5] G|

Figure 26: Two equivalent optimal sequences of reversals sorting the circular permutation Lg into
(1,-5,3,4,—2,6). While in the first sequence we have a terminus-asymmetric reversal ({3,4}) followed by
a terminus-symmetric reversal ({2,3,4,5}), in the second sequence both reversals are terminus-symmetric.

Thus, frequently only a subset of the sequences in a trace 7 are in agreement with the
constraint (p,q,r) and this subset is called a (p, ¢, 7)—induced subtrace. The adapted algorithm
generates directly the (p, ¢, r)—induced subtraces of sequences sorting 7 into mp. Applying the
constraint (p, ¢, r) is a symmetric approach: if a sequence s that sorts 7 into 7 is in agreement
with the constraint (p, q,r), then inv(s), that sorts 7r into =, is also in agreement with (p,q,r)

(see Figure 27).

Ter
[ORPED2 [[8 ByodE0ED[12
K2 B ERRWEN M 6 20 g b EED[12 >
[oEP[ED >[5 €l 8 i 12
K B A e 8 o> @ENED 12 >
K P2 JEMEIZEDS € BT 8 C@END 2
K P2 JEMEIZEDS € BT 8 @ENED 12 >

Ter

Figure 27: An example of one terminus-asymmetric, one external and three terminus-symmetric reversals
in a genome with 12 markers. Observe that each reversal has the same status, independently of applying
the sequence of five reversals from top to bottom or from bottom to top, thus the terminus-symmetry itself
is a symmetric approach.

This method was combined to the progressive detection of common intervals to analyze the

evolution of Rickettsia bacterium, as we will see in the next section.

69

Chapter 5. Biological constraints and applications

5.3.1 Analysis of the Rickettsia bacterium

We used our methods with two biological constraints, the common intervals progressively de-
tected (described in the previous section) and the terminus-symmetry, to analyze the evolutionary
scenario of the Rickettsia bacterium.

Rickettsia is a group of obligate intracellular parasites, that is, microorganisms that cannot
live outside a host cell. Rickettsia species are carried as parasites by many vectors, that are
frequently hematophagous arthropods, such as ticks, fleas, and lice. The parasites are occasion-
ally transmitted from the vector to mammalians (including humans), causing several diseases
(typhus, spotted fever, etc) [47, 48].

The genomes of intracellular parasites such as Rickettsia are observed to have a reductive
evolution, that is, the process by which genomes shrink and undergo extreme levels of gene
degradation and loss [2|. There are several completely sequenced Rickettsia genomes, and most
of them are closely related'®. Recently, Blanc et al. [13] studied the evolutionary scenario of

six Rickettsia species and reconstructed their ancestors R1, R2, R3, R4 and R5 (represented in

Figure 28).
R. conorii
T rs
0 lpg g— R.africae
0 2 — R. massiliae
9 R. felis
—R1
R3
i R. prowazekii

Figure 28: Phylogenetic tree of siz Rickettsia (extracted from [13]). The numbers on the edges give
the reversal distance between the genomes on the vertices, which could be either a current species or an
ancestor (R1, R2, R3, R4 and R5).

In particular, the ancestor R2 was compared to Rickettsia felis. According to the reconstruc-
tion of R2 done by Blanc et al. [13], these genomes have 12 blocks of contiguous homologous
genes, mapped as the permutation (1,3,—-2,—11,5,-9,-10,8,6,—7,—4,12) for R. felis, and

the identity permutation Z15 for R2. Blanc et al. [13] used the software GRIMM [64]| to propose

10A database of Rickettsia genomes is available on-line at http://www.igs.cnrs-mrs.fr/mgdb/Rickettsia.

70

5.3. Replication origin and terminus in prokaryotic circular chromosomes

an optimal sequence of reversals to transform R2 into Rickettsia felis (see Figure 29) and used
this one sequence in their results, including to account for the number of terminus-symmetric
reversals in the whole analysis. However, several other sequences exist and were not examined.
The reversal distance between these two genomes is equal to 9, and the complete analysis of the
traces of sequences sorting R. felis into R2 resulted in 546, 840 sorting sequences, distributed in
13 traces (Table 12). We did the analysis from R. felis to the ancestor R2 due to the further
use of the progressively detected common intervals to constrain the traces of sorting sequences.
The sequence of reversals proposed by Blanc et al. [13] sorts R2 into R. felis with five external

and four terminus-symmetric reversals (Figure 29), and is the inverse of a sequence of trace 1 in

Table 12.
R2 (ancestor)
Ter
[OEPED & OB ED : O Y0 i N
EB & JE e S 1 s (OYi0Y i E—F
KDY 7 JER ety o | : [[I 1
BB » Y e XY i | : [0 YT
ERJEPY o (e Y o | : [0 SIS S —
ERERY v (w00 : 3 e
[OE>@EL O D@ g o —r
EBJERT 7 Wy o 0% 0 Lo : i e
ERJIERS 7 I o 30 : > E ST
ERJERS i Lo B o Rean s BX 0 [m—

Ter

Rickettsia felis (descendant)

Figure 29: An optimal sequence of reversals to transform the ancestor R2 into Ricketsia felis, with five
external and four terminus-symmetric reversals (proposed in [13]). The two common interval breaks are
indicated by the red signs.

First, we applied only the progressive detection of common intervals. To compute the uni-
verse of optimal sequences sorting Rickettsia felis into R2, taking into account the progressively
detected common intervals, we had to relax the constraint to accept two interval breaks, because
the result of searching for progressive perfect subtraces that do not break any common interval or

that break one common interval per sorting sequence is empty. Accepting two interval breaks per

71

Chapter 5. Biological constraints and applications

Trace Trace normal form # seq.
L f=1{2,3}{3}{4,...,11}{5}{5,8,9,10}{7}{8, 10} < {5,6,7}{8,9} 90, 720
2. f={2,3}{3}H4,...,11}{5,...,10}{6}{6, 7, 8,10}{6,8} < {6,...,9}{7,8} 90, 720
3. f=1{2,3}{3H4,...,11}{5,...,10}{6}{6, 8,9, 10}{8,10} < {7,...,10}{8,9} 90, 720
4. f={2,3}3H4, ..., 11}{5,..., 10}{6,7,8,10}{7}{9} < {6,7,9} < {8,9} 60, 480
5. f={2,3}{3}4,...,11}{5,...,10}{6, 8}{9}{10} < {6,9,10} < {7,...,10} 60, 480
6. f={2,3}{3}4,...,11}{5,..., 10}{7}{8,10}{10} < {6,7,10} < {6,...,9} 60, 480
7. f={2,3}{3}{4,...,11}{5,9,10}{7}{9}{10} < {5.8} < {5,6,7} 60, 480

8. f={2,3}{3}4,...,11}{5,8,9,10}{5,9,10}{7} < {5,6,7,9, 10} < {6,7,8,10} < {6,...,9} 9,072

9. f={2,3}{3}{4....,11}{5,8,9,10}{6}{8, 10} < {5,6,8,9} < {5,7,8,9} < {6,...,9} 6,048
10. f={2,3}{3}{4, ..., 11}{5,9,10}{6,8}{10} < {5,6,9} < {5,7.8,9} < {6,...,9} 6,048
1. f={2,3}{3}{4....,11}{6}{6,8,9,10} < {5,6,8,10} < {5,6,8,9} < {5,...,8}{7,8} 6,048
12, f=1{2,3}{3}{4....,11}{5}{6,8,9,10} < {5,6,8,10} < {5,7,9} < {6,7,9} < {8,9} 3,024
13, f=1{2,3}{3}4, ..., 11}{6,8} < {6,9,10}{7,8} < {5,6,10} < {5,6,9} < {5,...,8} 2,520

Total 546, 840

Table 12: The 546,840 possible sequences of reversals for transforming Rickettsia felis, represented by the
permutation Rfe = (1,3,—-2,—11,5,-9,—10,8,6, -7, —4, 12), into the ancestor R2 = 12 are distributed
in 18 traces. Fach trace is represented by its normal form. The third column indicates the number of
sequences in each trace.

sorting sequence, more than half of the sorting sequences and traces from the complete solution
space is discarded (see the results in Table 13).

We observed that the sequence proposed in [13] (Figure 29) was selected by the construction
of progressive near-perfect subtraces accepting two common interval breaks per sequence (it is the
inverse of a sequence in subtrace A of Table 13). However, there are still many other possibilities
that have the same score with respect to progressively detected common interval breaks.

Then we applied only the terminus-symmetry constraint, also from the descendant Rickettsia
felis to the ancestor R2, in order to be able to compare the results with the previous analysis with
progressive detection of common intervals (since the terminus-symmetry is itself a symmetric
constraint, the analyses done from the descendant to the ancestor and from the ancestor to
the descendant lead to symmetric results). We tested different values for the parameters p

(the maximum number of external reversals), ¢ (the maximum number of terminus-asymmetric

72

5.3. Replication origin and terminus in prokaryotic circular chromosomes

Sub Trace Subtrace 2-tuple # seq.

A 1. e={4,...,11}{5,8,9,10}{8,10}{8,9}{5, 6, 7}{2, 3}{3}{7}{5} 45, 360
f=A{2,3H{3H4,...,11}{5}{5,8,9,10}{7}{8, 10} < {5,6,7}{8,9}

B 2. e={2,3}{3}{4,...,11}{5,...,10}{6}{6,7,8,10}{6,8}{6,...,9}{7,8} 45, 360
F={2,3{3}{4, ...,11}{5,...,10}{6}{6, 7,8,10}{6,8} < {6,...,9}{7, 8}

C 3. e={2,3}{3}{4,...,11}{5,...,10}{6}{6,8,9,10}{7,...,10}{8,10}{8, 9} 45,360
F=1{2,3H{3}{4,...,11}{5,...,10}{6}{6, 8,9,10}{8, 10} < {7,...,10}{8,9}

D 4. e={2,3}{3}H4,...,11}{5,...,10}{6,7,8,10}{7}{9}{6, 7,9}{8, 9} 60, 480
f=A{2,3{3H{4,...,11}{5,...,10}{6,7,8,10}{7}{9} < {6.7.9} < {8,9}

E 7. e={2,3}{3H{4,...,11}{5,9,10}{7}{9}{10}{5, 8}{5,6, 7} 60,480
f=A{2,3H{3H4,...,11}{5,9, 10 {7H{9}{10} < {5,8} < {5,6,7}

F 11. e={2,3}{3}{4,...,11}{6}{6,8,9,10}{5,6,8,10}{5,6,8,9}{5,...,8}{7,8} 6,048
f=1{2,3}{3}{4,...,11}{6}{6,8,9,10} < {5,6,8,10} < {5,6,8,9} < {5,...,8}{7,8}
Total 263, 088

Table 13: The 6 subtraces containing 263,088 possible sequences of reversals for transforming the descen-
dant Rickettsia felis into the ancestor R2 with progressive detection of common intervals, accepting at
most two common interval breaks. Each progressive near-perfect subtrace is represented by a 2—tuple (e is
the subtrace representative, [is the trace normal form). The second column indicates the corresponding
trace in Table 12. The fourth column gives the number of sequences in each subtrace.

reversals) and 7 (the terminus-symmetry threshold). The higher level of r and lowest values of p
and ¢ that gave a non-empty result are p = 3, ¢ = 0 and r = 0.7 (see the results of the analysis

with these parameters in Table 14).

Searching for (3,0,0.7)—induced subtraces revealed the existence of several optimal sorting
sequences that have six terminus-symmetric reversals, while the sequence proposed by Blanc et
al. [13] has only four (see Figure 29). We also observe that three over thirteen traces have se-
quences that were selected in both analyses, that is, progressive near-perfect subtraces accepting
two interval breaks per sequence and (3,0,0.7)—induced subtraces (see Tables 13 and 14).

In order to determine whether each pair of subtraces (B, B’), (C,C’) and (F,F’), has a
non-empty intersection, we combined both constraints in the same analysis, searching directly
for subtraces whose sequences are progressive near-perfect sequences with two interval breaks,
composed by at most 3 external and no terminus-asymmetric reversals, according to a threshold

of 0.7 to the terminus-symmetry rate. The results are given in Table 15.

With these results, we can say that, when sorting Rickettsia felis into the ancestor R2, 54,936

over 546,840 optimal sorting sequences have six terminus-symmetric reversals (considering a

73

Chapter 5. Biological constraints and applications

Sub’ Sub Trace Subtrace 2-tuple # seq.

B’ B 2. ={2,3}{3}{4, ..., 11}{5,...,10}{6}{6, 7,8,10}{6,8}{6, ..., 9}{7, 8} 60, 480
={2,3}{3}{4,....11}{5,...,10}{6}{6,7.8,10}{6, 8} < {6,...,9}{7, 8}

C’ C 3. ={2,3}{3}{4,...,11}{6,8,9,10}{8,10}{5, ..., 10}{6}{7,...,10}{8, 9} 50,904
={2,3}{3}{4, ..., 11}{5,...,10}{6}{6,8,9,10}{8, 10} < {7,...,10}{8,9}

10y F 11. ={2,3}{3}{6,8,9,10}{5,6,8,10}{5,6,8,9}{5,...,8}{4,...,11}{6}{7, 8} 1,512
={2,3}{3}{4,...,11}{6}{6,8,9,10} < {5,6,8, 10} < {5, () 8,9} < {5,...,8}{7,8}

G’ 9 = 3}{3}{8,10}{5,8,9,10}{5,6,8,9}{5,7,8,9}{4, ..., 11}{6}{6,...,9} 1,008

{2,
{2,3H{3}4,...,11}{5,8,9,10}{6}{8,10} < {5,6,8,9} < {5,7,8,9} < {6,...,9}

Total 113,904

Table 14: The 4 subtraces containing 113,904 possible sequences of reversals for transforming the descen-
dant Rickettsia felis into the ancestor R2 with terminus-symmetry contraint (p,q,r), where p = 3 (the
mazimum number of external reversals), ¢ =0 (the mazimum number of terminus-asymmetric reversals)
and r = 0.7 (the threshold for the terminus-symmetry rate). Each (p,q,r)—induced subtrace is repre-
sented by a 2—tuple (e is the subtrace representative, f is the trace normal form). The second column
indicates the corresponding progressive near-perfect subtrace in Table 13. The third column indicates the
corresponding trace in Table 12. The fifth column gives the number of sequences in each subtrace. All
the 113904 sequences selected with this criteria have six terminus-symmetric reversals, while the sequence
proposed by Blanc et al. [13] has only four (see Figure 29).

SUB Trace Subtrace 2-tuple # seq.
B NB’ 2. ={2,3}{3}{4, ...,11}{5,...,10}{6}{6, 7,8,10}{6, 8}{6, ..., 9}{7, 8} 28,224
= {2, 3}{3}{4 1135, ...,10}{6}{6,7,8,10}{6, 8} < {6,...,9}{7,8}
cnce 3. ={2,3}{3}{4,...,11}{6,8,9,10}{8,10}{5, ..., 10}{6}{7,...,10}{8,9} 25,200

=12 3}{3}{4 ., 1145, ...,10}{6}{6, 8,9,10}{8, 10} < {7,...,10}{8,9}
FNnF 11. ={2,3}{3}{6,8,9,10}{5, 6,8,10}{5,6,8,9}{5, ...,8}{4,...,11}{6}{7, 8} 1,512
={2,3}{3}{4,...,11}{6}{6, 8,9, 10} < {5,6,8, 10} < {5,6,8,9} < {5,...,8}{7,8}
Total 54,936

Table 15: The 3 subtraces containing 54,936 possible sequences of reversals for transforming the descen-
dant Rickettsia felis into the ancestor R2 with terminus-symmetry contraint (p,q,r), where p = 3 (the
mazimum number of external reversals), ¢ = 0 (the mazximum number of terminus-asymmetric rever-
sals) and r = 0.7 (the threshold for the terminus-symmetry rate), and progressive detection of common
intervals, accepting two interval breaks per sequence. Each subtrace is represented by o 2—tuple (e is the
subtrace representative, f is the trace normal form). The second column indicates the corresponding trace
in Table 12. The fourth column gives the number of sequences in each subtrace. All the 54,936 sequences
selected with this criteria have siz terminus-symmetric reversals, while the sequence proposed by Blanc et
al. [13] have only four (see Figure 29).

threshold of 0.7 for the terminus-symmetry rate) and break two common intervals progressively
detected. Since the sequence proposed by Blanc et al. [13] also breaks two common intervals pro-
gressively detected, but have only four terminus-symmetric reversals, we propose an alternative

sorting sequence, which is the inverse of a sequence extracted from the subtrace in the first line

74

5.4. Stratification on evolution of sexual chromosomes

of Table 15 (see Figure 30).

R2 (ancestor)

Ter
[OEPE T D : Dommmn [
OB @ 3 o> BT
[OEREDL + bR G Gl B i
EB] 5 JE e : o> E) @RI ©
[OEPE T 5G] g 0 [S
[OERE b @) i X5 [—r
[CEPEDL & OB E : o Sl i -
[ED > @l @@ 3 I [—
[ED <3 s €14 : OF i L S—r
[[3) @ @b el <ol ; OX i (I T

Ter

Rickettsia felis (descendant)

Figure 30: An alternative optimal sequence of reversals to transform the ancestor R2 into Ricketsia felis,
with three external and siz terminus-symmetric reversals, while the sequence proposed by Blanc et al. [13]
has five external and only four terminus-symmetric reversals (see Figure 29). The two common interval
breaks are indicated by the red signs.

5.3.2 Evaluating the execution time

Our experimental results show that the execution time of the variant of the program that uses
the terminus symmetry as a constraint to compute traces is compatible with other variants, as

we can see in Table 16.

5.4 STRATIFICATION ON EVOLUTION OF SEXUAL CHROMOSOMES

We also applied our method to analyze the evolution of the human X and Y chromosomes.
These chromosomes are very different, and, while the X chromosome is 155 Mbps long, the Y
chromosome is 58 Mbps long. Nevertheless, both are believed to have evolved from an identical
autosomal pair'? [50]. This process is at the origin of sexual differentiation: the female XX

and the male XY pairs. Due to the recombination mechanism, female organization favours

11 Autosomes are all non-sex chromosomes.

75

Chapter 5. Biological constraints and applications

Input Algorithm Ng N7 Execution time

all traces 546, 840 13 ~ 3 seconds

R.fe — R2 prog. near-2-perf. subtraces 263,088 6 ~ 2 seconds
(3,0,0.7)—induced subtraces 113,904 4 ~ 2 seconds
(3,0,0.7)—ind.+prog.near-2-perf.subt. 54,936 3 =~ 2 seconds
all traces 3,089,198,988 60,063 ~ 25.2 minutes

Test prog. near-1-perf. subtraces 157,903, 560 164 =~ 2 minutes

(2,3,0.8)—induced subtraces 2,976 3 =~ 1.7 minutes
(2,3,0.8)—ind.+prog.near-1-perf.subt. 0 0 o~ 21 seconds

Table 16: Computation results. Columns from left to right contain: 1- the input permutation 2-
the algorithm 3- the number of sequences according to the algorithm; 4- the number of traces ac-
cording to the algorithm; 5- the execution time of the algorithm. All algorithms are part of the
BAOBABLUNA package. Circular permutation R.fe — R2 is (1,3,-2,—11,5,-9,—10,8,6,—7,—4,12)
with lengths 39, 42, 44, 125, 14, 30, 32, 391, 18, 47, 100, and 176. Circular permutation Test is
(-12,11,-10,6,-5,13,2,7,8,-9,14, —15,3,4, 16, 1).

conservation of the X chromosome. On the other hand, evolution of the male XY pair causes
the divergence of the Y chromosome, as it gradually loses the capacity of recombining with its
X partner.

The X and Y chromosomes still share a main “pseudo-autosomal” region at one of their
extremities, where recombination occurs as between autosomes. Ninety percent of the Y chro-
mosome is however male-specific, and shows major differences in sequence as well as in gene
order with the X. Current theories suggest that the pseudo-autosomal region, which originally
covered the whole chromosomes, was successively pruned by a few big reversals on the Y chro-
mosome [40], whose extremities stood on each side of the limit of the pseudo-autosomal region.
The successive limits of the pseudo-autosomal region on the X chromosome, from the origin to
where it is located now, represent the limits of what have been called the “evolutionary strata”
of the sex chromosomes.

Several indices seem to indicate the presence of at least five strata on the X chromosome
[55, 60]. The strata are ordered according to their creation time. Thus, the stratum that is the
closest to the pseudo-autosomal region is numbered 5, while the stratum which is at the other
extremity of the X chromosome is numbered 1. A sequence of reversals on a signed permutation
representing the relative ordering of the genes common to chromosomes X and Y, obtained

thanks to the software GRIMM [64], has been published in study of Ross et al. [55], and is given

as an argument to support the existence and bounds of the most recent strata. The sequence is

76

5.4. Stratification on evolution of sexual chromosomes

represented in Figure 31.

Stratum 5 Stratum 4

o 4 B 404 6 gada4 M
4 0 4 B 404 H JHJHJ D
I S 0 T =) B B @
2D €12 @N €1 Gl T @ T G e
D €1 @l €l Gl TN @ N T @
| A g mme n fagel @ [B8 _J68 g8 o [B 4
| A4
ez

Stratum 3

WElEg i jBalag 6 | 85 404 o0 | B g
€T [@ Gl ED T T WD T
v [Far O (EIED 4 G €T G5 G T B G D

Figure 31: Sequence of reversals transforming human X into human Y chromosome, that shows the
formation of the last three strata (numbered 3, 4 and 5) on X chromosome (extracted from Ross et
al. [55]). The PAR symbol represents the pseudo-autosomal region in each chromosome.

However for the same permutation, there are many sequences that are possible, including
others sequences that are in agreement with a model of evolution by strata, which we now

describe.

5.4.1 Model of evolution by strata

For a signed permutation X = (Xi,...,X,), a k—strata is defined as a partition of X into
a sorted set B = (Ij,Ix—1....,11) of k intervals, such that I = {|Xi|,...,|Xn, |}, Tkm1 =
{IXnpt1ls s [Xnptme o | s o0 Tt = {| Xt 4mot1ls - -+ | Xngt..4n1 |}, where n; is the size of the
interval I;. Observe that the intervals are ordered by their positions, but they are indexed in a
decreasing way from the beginning to the end of the permutation. We define a B—stratifying

sequence of reversals as follows.

Definition 1 Given a signed permutation X = (X1,...,X,) and a k—strata B = (Iy;, Iy_1,...,11),

we say that a sequence of reversals r = p1p2 ... pq is a B—stratifying sequence if:

1. The sequence T has a subsequence'®> b= 610 ...0y, such that for 1 <i <k, the reversal 0;

?Recall that a “subsequence” b of a sequence r is obtained by eliminating some of the elements (here reversals)
of r while preserving the order of the remaining elements.

7

Chapter 5. Biological constraints and applications

contains the interval I; and, for any j > i, no element of I; is in 0;.

2. For any two consecutive reversals 0; and 0;11 of b, if p is a reversal that occurs between 6;

and 0,11 in r, then p is a subset of [y U Iy... U I;.

The reversals in b are said to be big reversals (each big reversal creates a new stratum), while
the reversals of r that are not in b are said to be small reversals. A sequence of reversals that
produces a k—strata has k big reversals and d — k small reversals (we recall that d is the reversal
distance for the given permutation).

Consider a permutation X, a k—strata B = (I, Ix_1,...,11) for X and a target permutation
Y. If T is a trace of optimal sequences of reversals sorting X into Y, we call B—induced subtrace
Tp the subset of T defined as Tp = {s|s € T and s produces the k—strata B in X}.

This approach is conceptually asymmetric, since the stratification is supposed to take place
in the ancestor genome. Observe that actually X chromosome is not the ancestor of Y, but
it is assumed to be the ancestor state of Y, at least for the analyzed portion. Indeed, it has
been observed that a considerable portion of X chromosome is highly similar to a portion of
chromosome 1 of chicken [55], thus this region, that coincides with strata 5 and 4 and a part of
stratum 3, is assumed to be free of rearrangements after the differentiation of sexual chromosomes
in humans. Thus, the analysis should be done from the stratified (ancestor) genome to the
other (descendant), and reflects directly the real chronology of the events (remember that the

asymmetric progressive perfect sequences should be inverted to reflect the real chronology).

5.4.2 Algorithm for exploring the sequences that stratify a permutation

We have developed a version of our exploration algorithm that, given a k—strata B, outputs the
set of traces whose sequences produce B. This requires a slight modification of Algorithm 5,
described as follows.

Besides the two signed permutations X and Y, the modified algorithm requires a k—strata
B = (I, Ix—1,...,11) for X. The algorithm returns the traces whose B—induced subtraces are
not empty, and, for each trace, the size of its B—induced subtrace.

It is the first step (Siepel’s step) that is mainly modified. After searching all next reversals,

we must select only those that are in agreement with the given k—strata: the first reversal is

78

5.4. Stratification on evolution of sexual chromosomes

fixed, and corresponds exactly to the first stratum (it is a big reversal); then, at each step,
suppose stratum [/, has been moved by a big reversal and not stratum [,,;; we can choose
between performing a big reversal including 7,41 and no elements from the following ones, or a
small reversal, included in [; U---U I,. The procedure is described in Algorithm 7.

At the end of the execution, we have the complete set of non-empty B—induced subtraces
(each subtrace is represented by a 2-tuple containing the normal form of the corresponding trace
and a valid B—stratifying sequence as a representative) and their sizes for a given permutation
and a k—strata B. There is no guarantee that a strata-induced subtrace exists, thus the algorithm
can lead to an empty result (an empty result means that it is not possible to produce the proposed

stratification in the genome by an optimal sequence of reversals).

Theoretical complexity of Algorithm 7. The complexity is the same of Algorithm 5: since the
position of a stratum in the genome remains unchanged until the stratum is created, to select
a reversal we only need to compare its boundaries to the boundaries of the next stratum to be
created, which takes constant time. Thus, the selection step can be done in time O(n?) since the
number of reversals returned by Siepel’s algorithm is O(n?) (n is the size of the permutation).

The number of selected big and small reversals is also bounded by n?. a

5.4.3 Analysis of the results

We applied our modified algorithm to the permutations X = (1,2,3,4,5,6,7,8,9,10,11,12) and
Y = (-12,11,-2,—-1,-10,-9,8,—5,7,6,—4, 3), derived from the genes that are shared by the
last three strata of the human X and Y chromosomes (Figure 31). It was used in a study of Ross
et al. [55] to account for the positions of the strata 3,4,5 in the human sex chromosomes, by
giving one optimal sorting sequence of reversals.

We are now able to handle the whole set of sorting sequences: the solution space of sorting this
permutation by reversals contains 31,752 sequences, distributed among 6 traces (see Table 17).

When we search only for the sequences of reversals that sort X into Y and respect the
formation of the last three strata as they are defined by Ross et al. [55], that is, By, =
({1,2},{3,...,10},{11,12}), we get 420 sequences, corresponding to a unique B,,—induced

subtrace, represented by the 2—tuple (e, f) where e is a valid stratifying sequence and f is the

79

Chapter 5. Biological constraints and applications

Algorithm 7 Enumerating all the strata-induced subtraces of two signed permutations and a
given k—strata in the origin permutation

Input: Two signed permutations X,Y and a k—strata B = (Iy, Iy—1,...,1;) for X
Output: The representative, normal form and counter (e, f, ¢) of each B—induced subtrace of sequences
of reversals sorting X into Y

d « reversal distance of (X,Y")
T—0
S «— {p | pis an optimal 1—sequence for X — Y} [Siepel [59]]
if S contains a reversal p = I; [the first reversal may create the first stratum] then
insert (p,p,1) in 7 [the 1—sequence that creates the first stratum is a B—induced 1—subtrace]
end if
for each integer i from 2 to d do
T’ — () [contains the representatives/normal forms/counters of all the B—induced i—subtraces]
for each (e, f,c) in T |[(e, f) repr. the B—induced (i — 1)—subtrace ¢; c is the counter of {] do
X X
z < 1 [to store the index of the last created stratum)]
for each reversal p in e = p1p2...p;_1 do
X" — X" o p |apply the reversal p to X']|
w « the biggest index of a stratum in Iy, I_1,..., I, such that p overlaps I,
ze—w
end for
b« k —z [number of remaining big reversals]
S" «— {p | p is an optimal 1—sequence for X’ — Y} [Siepel [59]]
for each 1—sequence p € S’ do
accept — false

if p contains the interval I,,1 and p does not overlap an interval in I,49,1,3,...,I; then
accept < true [p is the next big reversal]
else
ifd—i+1—b>0 [test whether it can apply a small reversal] and p does not overlap an
interval in 1,41, 1,492,...,I; then
accept «— true [p is a small reversal]
end if
end if

if accept then
fo— f+p [extend the normal form f by adding the reversal p; see Algorithm 3]
if there exists (¢/, f’,¢’) € 7’ such that f' = f, [COMPARISON]| then
¢ —cd +c¢ [upd. the counter of the B—induced i—subtrace ¢’ repr. by (¢/,)]
else
e, < e-p [simply concatenate p to the sequence €]
insert (ep, fp,c) in 7" |[(ep, f,) repr. the B—ind. i—subtr. t,; c is the initial counter of
£
end if
end if
end for
end for
T T
end for
return 7 [7 is the final set of B—induced d—subtraces sorting X into Y]

80

5.4. Stratification on evolution of sexual chromosomes

Trace Trace normal form # seq.
1. f={3}{3,...,12}{5, 6}{8}{11}{11, 12} < {1,2,11,12}{5, 7} 10, 080
2. f={1,2,3}1,...,12}{4, ...,10}{5, 6 }{8}{11} < {1,2,4,...,10}{5, 7} 10, 080
3. f={1l,...,11}{1,...,12}{3,..., 11}{3}{5, 6} {8} < {1,2,11}{5,7} 10, 080
4. F={3,...,11}{4,...,10}{5,6}{8} < {3,12}{5,7} < {4,...,10,12} < {1,2,11,12} 840
5. f={5,6}{8}{11,12} < {4,...,10,12}{5,7} < {1,2,3,12} < {1,...,11}{1,2,4,...,10} 336
6. f={1,...,11}{5,6}{8} < {1,2,3,12}{5,7} < {4,...,10,12} < {1,2,4,...,10}{11, 12} 336
Total 31,752
Table 17: The 31,752 possible sequences of reversals for transforming X = TIi15 into Y =

(—-12,11,-2,—-1,-10,—-9,8,—5,7,6,—4, 3) are distributed in 6 traces. Each trace is represented by its
normal form. The third column indicates the number of sequences in each trace.

normal form of its corresponding trace, as we can see in Table 18.

Trace Subtrace 2-tuple # seq.

1. e = {11, 12{11}{3, ..., 12}{3}{5, 6}{8}{5, 7}{1,2,11, 12} 420
£ ={3}{3,...,12}{5, 6} {8}{11}{11, 12} < {1,2,11,12}{5, 7}

Table 18: The B, ,—induced subtrace of optimal sequences that sort the chromosome X = 115 into Y =
(-12,11,-2,-1,-10,-9,8, —5,7,6, —4, 3) and produce the 3—strata By, = ({1,2},{3,...,10},{11,12})
on X.

There are in consequence 420 sequences out of 31,752 that support the bounds given in [55],
and they are all in the same trace. Here, more relevant than the number of sequences is the fact
that they are all part of a unique subtrace, which means that the reversals have been identified
correctly. So if we suppose the bounds are known, the sequence given by Ross et al. [55] is
accurate.

Nevertheless, the limits between strata may be not so clear, and one could be interested in
testing other hypotheses. For instance, we could extend strata 4 incorporating to it the markers
1 and 2 which were part of stratum 3 in the previous analysis. According to this hypothesis,
which could be biologicaly meaningful as well, we have B = ({1,2},{3,...,12}), and there are
2,520 sequences in the B—induced subtrace (see Table 19).

Thus, using our algorithm we are able to evaluate the different hypotheses of stratification and

find all the subtraces (that is, a representation of all sequences) that produce each stratification.

81

Chapter 5. Biological constraints and applications

Trace Subtrace 2-tuple # seq.

1. e={3,...,12}{11, 12}{11}{3}{5, 6 }{8}{5, 7}{1,2, 11,12} 2,520
F={3}{3,...,12}{5, 6 .{8}{11}{11, 12} < {1,2,11,12}{5, 7}

Table 19: The B—induced subtrace of optimal sequences that sort the chromosome X = T15 into Y =
(-12,11,-2,-1,-10,-9,8,—5,7,6, —4,3) and produce the 2—strata B = ({1,2},{3,...,12}) on X.

5.4.4 On the execution time of the strata variant

In order to evaluate the execution time of this modified algorithm, we ran both the original algo-
rithm (that searches for all the traces) and the modified one (that searches for the strata-induced
subtraces) over the previous permutation and over an extended permutation, also extracted from
the evolution of human X and Y chromosomes. The results are presented in Table 20 and shows

that searching for strata-subtraces runs much faster than searching for all traces.

Input Algorithm Ng N, Execution time
XY all traces 31,752 6 =~ 1.3 seconds
Bgzy—induced subtraces 420 1 ~ 0.5 seconds
ertXY all traces 316,793,943,648 87,983 ~ 5 hours
B—induced subtraces 608, 343, 606 2,284 ~ 4 min

Table 20: Computation results. Columns from left to right contain: 1- the input (permutation and
strata) 2- the algorithm 3- the number of sequences according to the algorithm; 4- the number of traces
according to the algorithm; 5- the execution time of the algorithm. Both algorithms are part of the
BAOBABLUNApackage. Permutations XY are X = T with 3—strata B, = ({1,2},{3,...,10},{11,12}),
and Y = (-12,11,-2,-1,-10,-9,8,—5,7,6,—4,3) (human X and Y chromosomes, as the scenario
proposed in [55]). Permutations extXY are Xcyy = T15 with 3—strata B = ({1,2},{3,...,7},{8,...,15}),
and the permutation Yo,y = (14,—-10,8,—-1,9,11,-7,6, 4,5, —3,2,15,12, —13) (extended human X and
Y chromosomes, adding markers to stratum 3).

5.4.5 A deeper study of the human X and Y sexual chromosomes

The permutations representing the X and Y chromosomes as proposed by Ross et al. [55] cover
only the first 11.2 Mbps on X, and even for this small portion of the chromosome there are alter-
native strata boundaries. Moreover, if we extend the permutations to cover a bigger portion of
the chromosome, the number of possibilities for placing the strata boundaries increases. Indeed,

only the boundary between the pseudo-autosomal region (PAR) and stratum 5 and the boundary

82

5.4. Stratification on evolution of sexual chromosomes

between strata 5 and 4 are well established. The other boundaries are still controversial, and
even the number of ancient strata is discussed.

We partipated in a collaborative work of Lemaitre et al. [41], that intends to go further in
the study of these points (the submitted version of this study is included in Appendix D, in
the end of this manuscript). In this work, our method for analyzing strata-induced subtraces,
or more generally, our knowhow in analyzing sequences of reversals with respect to a genome
stratification were applied to analyze extended permutations representing the chromosomes X
and Y and as part of a probabilistic analysis to verify whether the occurrence of a sequence of
reversals that stratify a genome is more likely to be true than the occurrence of a sequence of

reversals that do not.

5.4.5.1 Analysis of strata in extended permutations

As we have seen, according to Ross et al [55], the first 11.2 Mbps of X chromosome has 12
homologous markers with the Y chromosome, resulting in the signed permutations X = 7o
and Y = (—-12,11,-2,-1,-10,-9,8,—-5,7,6,—4,3) (see figure 31). With the strata B,, =
({1,2},{3,4,5,6,7,8,9,10},{11,12}) on X, there is one B,,—induced subtrace with 420 parsi-
monious stratifying sequences of reversals, that is, all sequences sorting X into Y according to
the strata B, are in the same subtrace. So if we suppose that B, is accurate, the reversals in
the sequence given by Ross et al. [55] were identified correctly.

Nevertheless, the stratum 3, as proposed in B, is incomplete. In fact, to cover the stratum
3 entirely we should consider the first 45 Mbps of X chromosome and there is no guarantee that
we can find the same strata boundaries if we extend the permutations. Although the boundaries
between the pseudo-autosomal region (PAR) and the stratum 5 (the point before marker 1 in X
permutation) and between strata 5 and 4 (the point between markers 2 and 3 in X permutation)
are well established, the other boundaries (including the boundary between strata 4 and 3, that
is present in the study of Ross et al. [55]) are still controversial. Moreover, since it is hard to
recognize the most ancient rearrangement events, even the number of ancient strata is still under
discussion.

Lemaitre et al. [41] analyzed the strata boundaries and found more evidences of the reversals

that created strata 5 and 4, that reaffirm the estabished boundaries between PAR and stratum

83

Chapter 5. Biological constraints and applications

5 and between strata 5 and 4, but were not able to clarify the boundary between strata 4 and 3.
The authors revised the permutations representing X and Y proposed by Ross et al [55], using
a whole chromosome alignment, and found out that, for the same 11.2 Mbps of X chromosome,
there are three homologous markers that have not been considered by Ross et al. [55]. Extending
the permutations to cover the first 45 Mbps of X chromosome, Lemaitre et al. [41] identified
other 8 homologous markers. All markers considered in the analysis of Lemaitre et al. [41] are

listed in Table 21.

With the extended permutations, Lemaitre et al. [41] considered in particular two hypotheses
for placing the boundary between strata 4 and 3. The first is to maintain this boundary in the
same position proposed by Ross et al. [55], that is, between markers KAL1 and TBLI1 (see
Table 21). The second is to put the boundary in the place occupied by the marker AMEL
(there are biological evidences to justify this hypothesis [36], see details in Lemaitre et al. [41]).
In both cases, our method for searching directly the strata-induced subtraces were applied. It
was verified that it is not possible to find a reversal that creates the whole stratum 3 with the
boundary as proposed by Ross et al. [55]. However, it is possible to create a shorter stratum
with this boundary and this may suggest that the number of strata is higher than supposed. The
same result was found for the analysis when the boundary between strata 4 and 3 was placed in
the position occupied by AMEL. Lemaitre et al. [41] consider that this indeed indicates that the
number of strata in the human X chromosome can be higher than 5. Moreover, due to several
biological arguments [36, 41], the authors consider that placing the boundary between strata 4

and 3 in the position occupied by AMEL is an acceptable hypothesis.

5.4.5.2 Simulations to estimate the stratification likelihood

Lemaitre et al. [41] used our knowhow in analyzing sequences of reversals with respect to a
genome stratification as part of a probabilistic analysis to verify whether the occurrence of a
sequence of reversals that stratify a genome is more likely to be true than the occurrence of a
sequence of reversals that do not. This approach is based on the distribution of all the sorting
sequences with respect to the stratification process, and we helped to generate the information

that was further used to compute the probabilistic values.

84

5.4. Stratification on evolution of sexual chromosomes

Marker name X start X end Y start Y end | X Y Str Refs

PAR 0 2,709,520 0 2,709, 520 0 0 | PAR | Lahn & Page [40]
GYG*,ARSD*, 2,672,359 3,346,731 | 12,492,110 | 13,139,179 1 —6 5 *Lahn & Page [40]
ARSE*,ARSF**, **Skaletsky
ADLICAN** (1) et al. [60]

PRK (2) 3,345,018 3,848,954 7,068, 601 7,506,089 2 —5 5 Lahn & Page [40]
Anonymous 3,662,755 3,909,738 | 19,743,211 | 19,851,471 3| —20 4 Lemaitre et al. [41]
Anonymous (3) 4,110, 549 4,490,406 | 17,583,377 | 18,076,812 4 19 4 Ross et al. [55]
Anonymous (4) 4,602, 689 5,384,111 | 16,706,206 | 17,570,219 5| —18 4 Ross et al. [55]
around NLGN4 (5) 5,384, 848 6,313,029 | 14,981,290 | 15,805,945 6 | —15 4 Skaletsky et al. [60]
Anonymous (6) 6,594, 680 6,624,810 | 16,664,668 | 16,691,008 7 17 4 Ross et al. [55]
around STS (7) 6,625,496 7,448,677 | 15,807,027 | 16,376,778 8 16 4 Lahn & Page [40]
Anonymous (8) 7,449,397 7,646,086 | 14,794,314 | 14,971,778 9 14 4 Ross et al. [55]
around VC (9) 7,731,889 7,952,770 | 14,681,748 | 14,772,569 | 10 | —13 4 Skaletsky et al. [60]
around KALL1 (10) 8,388,775 8,678,660 | 14,456,224 | 14,455,780 | 11 | —12 4 Lahn & Page [40]
TBL1 (11) 9,367, 582 9,694, 004 6,818,075 7,040,054 | 12 4 | 3/4 | Skaletsky et al. [60]
APXL 9,803, 943 9,836,714 | 13,139,984 | 13,177,590 | 13 7 | 3/4 | Skaletsky et al. [60]
Anonymous 9,925,052 | 10,026,743 2,935, 524 6,736,276 | 14 2 | 3/4 | Lemaitre et al. [41]
AMEL (12) 11,221,454 | 11,228,802 6,756, 180 6,804,332 | 15 —3 | 3/— | Lahn & Page [40]
TMSB4 12,893,995 | 12,914,689 | 14,259,652 | 14,336,452 | 16 11 3 Lahn & Page [40]
TXNLG 16,713,573 | 16,773,411 | 20,187,740 | 20,234,258 | 17 22 3 Skaletsky et al. [60]
EIF1A 20,052,557 | 20,069,887 | 21,146,999 | 21,164,428 | 18 | —23 3 Lahn & Page [40]
ZF 24,071,318 | 24,144,376 2,855, 296 2,922,379 | 19 1 3 Lahn & Page [40]
MAP3/TAB3 30,755,480 | 30,819,301 | 13,771,944 | 13,828,537 | 20 9 3 Lemaitre et al. [41]
BCoR 39,795,364 | 39,917,376 | 20,076,630 | 20,184,596 | 21 21 3 Skaletsky et al. [60]
CRSP2P-CASK 40,392,502 | 41,667,660 | 13,240,309 | 13,592,325 | 22 8 3 Lahn & Page [40]
uT 44,617,701 | 44,856,791 | 13,869,035 | 14,101,947 | 23 | —10 3 Lahn & Page [40]

Table 21: List of markers on X and Y chromosomes in humans considered by Lemaitre et al. [41].
Columns from left to right represent: 1- The marker name (in parenthesis are indicated marker numbers
in Ross et al. [55]); 2- start position on X chromosome; 3- end position on X chromosome; 4- start
position on Y chromosome; 5- end position on Y chromosome; 6- order of markers on X chromosome;
7- order of markers on Y chromosome; 8- Stratum on X to which the marker belongs (some markers
have two different values, due to the two hypotheses analyzed by Lemaitre et al. [41]); 9- The reference
mentioning the marker for the first time.

85

Chapter 5. Biological constraints and applications

Analyzing a genome

We developed a complete analysis of a genome with respect to all possible stratifications,
that can be described as follows. First, we enumerate all optimal sorting sequences of reversals
using Algorithm 2. For each resultant sorting sequence s, we construct the normal form of the
trace T that contains s (iterating Algorithm 3 over s), and we verify whether s is a stratifying
sequence, that is, whether there is a k—strata B = (I, [x_1,...,I1) on the initial genome, such
that s has the properties given in Definition 1 with respect to B. If this is the case and the
k—strata B is already associated to the trace 7', we increment the number of occurrences of the
pair < T, B > (that is, the number of sequences in 7' that produce the stratification B in the
original genome). If the k—strata B is not yet associated to 7', then we start the pair < 7', B >
with one occurrence. If s does not produce any stratification, the procedure is analogous. If the
absence of strata is already associated to the trace T, we increment the number of occurrences of
the pair < T, null > (that is, the number of sequences in 7" that do not produce a stratification
in the original genome). If the absence of strata is not yet associated to 7', then we start the
pair < T, null > with one occurrence.

The results of applying this analysis to the permutations representing human X and Y chro-

mosomes proposed by Ross et al. [55] are given in Table 22.

The random genome generators

We also developed random genome reversal-generators, that create new genomes by applying
a defined number of random reversals on an initial genome with a certain number of markers.
The construction is parsimonious: if we apply d reversals to create a genome A; from an initial
genome Ay, it means that the minimum number of reversals to sort A4 back into Ag is d. This

construction can be represented by the following schema:

Ag—pr— A1 —py— A — ... — Ag1 — pg— Ag

To select a reversal p; during this construction, we take two random positions in the genome
A; 1, and test whether inverting the interval comprised between these two positions in A; 1 to

obtain A; is parsimonious (that is, whether the most parsimonious sequence of reversals to sort

86

5.4. Stratification on evolution of sexual chromosomes

Number of strata 3 3 2 1 0

Trace normal form By Asz Ao Aq null Total
{313, ..., 12}{5, 6} {8}{11}{11, 12} < {1,2,11,12}{5, 7} 420 0| 2,520 0 7,140 | 10,080
{1,2,3{1,...,12}{4,...,10}{5,6}{8}{11} < {1,2,4,...,10}{5,7} 0 0 0 | 1,260 8,820 | 10,080
{1,...,11{1,...,12}{3, ..., 11}{3}{5,6}{8} < {1,2,11}{5,7} 0 0 0 | 1,260 8,820 | 10,080
{5,6}{8}{11,12} < {4,...,10,12}{5,7} < {1,2,3,12} < 0 | 120 0 0 216 336
{1,...,11}{1,2,4,...,10}
{1,...,11}{5,6}{8} < {1,2,3,12}{5,7} < {4,...,10,12} < 0 0 0 0 336 336
{1,2,4,...,10}{11,12}
{3,...,11}{4,...,10}{5,6}{8} < {3,12}{5,7} < {4,...,10,12} < 0 0 0 0 840 840
{1,2,11,12}

Total 420 | 120 | 2,520 | 2,520 | 26,172 | 31,752

Table 22: Analysis of all optimal sequences of reversals that sort the human chromosome X = T
into Y = (—12,11,-2,—-1,-10,-9,8,—5,7,6, —4, 3) with respect to all possible stratifications. Columns
from left to right are: 1- A sequence of reversals that represent the trace; 2- Sequences that produce the
3—strata B,y = ({1,2},{3,...,10}, {11, 12}) (strata boundaries proposed by Ross et al [55]); 3- Sequences
that produce the alternative 3—strata As = ({1,2,3},{4,...,10},{11,12}); 4- Sequences that produce
the alternative 2—strata Ay = ({1,2},{3,...,12}); 5- Sequences that produce the alternative 1—strata
A1 = ({1,...,12}; 6- Sequences that do not stratify the X chromosome (null); 7- The total number of
sequences in the trace.

the genome A; back into Ap has i reversals). If a reversal is not valid under this criterion, we
repeat the process of taking two random positions in the base genome A; 1 until finding a valid
reversal for the step i.

We built two different generators: a free-generator, that does not impose additional con-
straints to the selection of reversals, accepting any optimal sequence of reversals; and also a
B—constrained-generator, that imposes a second constraint in the selection of reversals, accepting
only an optimal sequence of reversals that produces the given k—strata B = (I, Ix—1,...,11) on
the initial genome. Thus the B—constrained-generator generates a genome through a B—stratifying
sequence of reversals, according to the previous Definition 1.

Although the two positions selected before each reversal are uniformily distributed, we can

not guarantee that the resulting simulated permutations are also uniformily distributed.

Strata likelihood analysis

In order to determine whether the stratification process, as proposed by Ross et al. [55],
with X = (1,2,3,4,5,6,7,8,9,10,11,12), Y = (—-12,11,-2,—-1,-10,-9,8,-5,7,6,—-4,3) and
the 3— strata By, = ({1,2},{3,...,10}{11,12}) on X, is likely to be true, the free and the

87

Chapter 5. Biological constraints and applications

Bgy—constrained generators were used in a probabilistic study of Lemaitre et al. [41]. The
simulated genomes were generated over the initial genome X = (1,2,3,4,5,6,7,8,9,10,11,12)
(12 markers), by the application of 8 reversals (the reversal distance between the chromosomes
X and Y of Ross et al. [55] is 8).

The distributions of optimal sequences of reversals with respect to the stratification for free
versus B, —constrained simulations were compared by using non-parametric statistics. Although
the two sets of simulations generated are extreme cases and intermediary cases were not inves-
tigated, and, moreover, there is no guarantee that the simulated permutations are uniformily
distributed, the results suggest that the hypothesis that evolutionary strata 3, 4 and 5 have been

formed by Y inversions is a likely hypothesis [41].

5.5 SYMMETRY versus ASYMMETRY WHEN APPLYING CONSTRAINTS

In the previous sections, all the biological constraints were analyzed qualitatively, in order to
determine whether they were symmetric (when the results of the analysis of the sequences sorting
a first genome into the second can be obtained from the analysis of the sequences sorting the
second genome into the first) or asymmetric.

We argued that when a constraint is asymmetric, it can only be applied when the relation
ancestor-descendant between the analyzed genomes is known and, in this case, a direction to the
analysis must be defined. We summarize below the characteristics of each one of the constraints

that we considered.

1. Initial detection of common intervals without interval breaks: can be applied to linear or

circular chromosomes and is symmetric.

2. Initial detection of common intervals with a bounded number of interval breaks: can be ap-
plied to linear or circular chromosomes and is asymmetric (the relation ancestor-descendant
between the analyzed genomes must be known, and the analysis must be done from the

descendant to the ancestor).

3. Progressive detection of common intervals without or with a bounded number of interval

breaks: can be applied to linear or circular chromosomes and is asymmetric (the relation

88

5.6. Compatibility between constraints

ancestor-descendant between the analyzed genomes must be known, and the analysis must

be done from the descendant to the ancestor).

4. Terminus-symmetry: can be applied only to circular chromosomes and is symmetric.

5. Strata on sexual XY chromosomes: can be applied only to linear chromosomes and is

conceptually asymmetric (the analysis must be done from the X to the Y chromosome).

5.6 COMPATIBILITY BETWEEN CONSTRAINTS

A list of different constraints can be applied together under the condition that they are compati-
ble. Two symmetric constraints are frequently compatible and result in a symmetric approach, for
example terminus-symmetry and initial detection of common intervals without interval breaks.
An asymmetric and a symmetric constraints are also frequently compatible, and applied together
they result in an asymmetric approach. This was the case of applying the progressive detection
of common intervals, which is an asymmetric constraint, together with the terminus-symmetry,
which is a symmetric constraint, in the previous analysis of Rickettsia bacterium.

On the other hand, the strata constraint can not be applied together with the terminus-
symmetry, because while the first is defined only for linear chromosomes, the second is defined
only for circular chromosomes. Moreover, the asymmetric strata and progressively detected com-
mon intervals are not compatible, because the analysis when applying the strata constraint may
be done from the ancestor to the descendant, while the analysis when applying the progressive
detection of common intervals may be done from the descendant to the ancestor.

Thus, using a list of different constraints at once may be interesting when analyzing traces,
but we may first verify the compatibility in order to select the constraints to be applied. We
summarize here the compatibility analysis of the constraints that we considered in this chapter.

Initial and progressive detection of common intervals are alternative approaches, that can
not be applied together. When interval breaks are not accepted, initial detection of common
intervals is symmetric and can be combined with terminus-symmetry or strata constraints. The
initial detection of common intervals with a bounded number of interval breaks, as well as the

progressive detection of common intervals (with or without interval breaks), can be combined

89

Chapter 5. Biological constraints and applications

with the terminus-symmetry constraint.

Strata and terminus-symmetry are incompatible because the first is proper to linear while the
second is proper to circular chromosomes. Strata is conceptually applied in the analysis from X
(closer to the ancestor) to Y chromosome and is also incompatible with the progressive detection

of common intervals, that must be applied from the descendant to the ancestor.

5.7 FINAL REMARKS

In this chapter we proposed the use of different biological constraints to reduce the universe of
sequences and classes, and show how to apply these methods to analyze real cases in evolution.
One of these constraints is the list of common intervals, which are the clusters of co-localised
genes between the considered genomes. We used common intervals in two different approaches,
one that searchs for perfect sorting sequences [18], that is, sequences that do not break the
common intervals detected between the two initial genomes, and one that searchs for progressive
perfect sorting sequences, that do not break the common intervals progressively detected [17]
when sorting a genome into another. Other constraints were defined according to the practical
problems we were interested in. In particular, we are able to characterize the reversals with
respect to the replication terminus in circular chromosomes (this method was used to analyze
the evolution of the Rickettsia bacterium), and to apply a constraint to analyze directly the
stratification process in the evolution of the sexual chromosomes X and Y in human [18, 41].

The implementation of all these variants are part of BAOBABLUNA framework, that will be
described in Chapter 6. Several experiments show that indeed these variants reduce considerably
the number of generated traces. Consequently, they run faster than the algorithm that generates
the traces without contraints and are able to analyze permutations with higher reversal distances.
The constraints were also analyzed in order to determine whether they lead to symmetric or to
asymmetric approaches, and to verify which constraints are compatible and which constraints
are incompatible.

We then applied our method that generates traces according to biological constraints to
analyze two real cases, the evolution of human sexual chromosomes X and Y [55] and the evolution

of the Rickettsia bacterium, which is an intracellular parasite. In both cases, we obtained a better

90

5.7. Final remarks

characterization of the evolutionary scenarios of these genomes [17, 18, 41], with respect to the
results of previous studies [13, 55|, that were based on a single sorting sequence.

The use of biological constraints has some important limitations. First, there is no guarantee
that a sequence that respects the given contraints exists, thus this approach may lead to empty
results, which is undesirable. Relaxing the biological constraints in order to obtain a non-
empty result is generally possible, but this approach may require several essays of the relaxing
parameters, which costs computation time.

Moreover, in the use of the terminus-symmetry constraint, the choice of the values for the
parameters p (the maximum number of external reversals), ¢ (the maximum number of terminus-
asymmetric reversals) and r (the threshold for the terminus-symmetry rate) is not trivial and
often requires several essays. In addition, we adopt some simplifications such as ignoring the space
between markers and the replication terminus shift produced by each terminus-asymmetric re-

versal. We must have these simplifications in mind when interpreting the results of the analyses.

91

Chapter 5. Biological constraints and applications

92

Chapter 6

BAOBABLUNA

Summary
6.1 Optimization of memory use 00 0 94
6.1.1 The compressible sorted set o 94
6.1.2 Freezing operations 96
6.1.3 Performancel 96
6.2 Architecture. L L L e e e e e e e e e e e 97
6.3 Test i i i e 100
6.4 Download andsetup ¢ o i i i i i i i it i it 101
6.5 Finalremarks o e e e 102

The implementation of all the algorithms presented in this work is integrated to the software
BAOBABLUNA [16], a framework to deal with permutations. This framework was implemented
in a object-oriented paradigm, using the Java technology'3.

Besides the implementation of Siepel’s algorithm and of all algorithms for analyzing traces,
BAOBABLUNA contains a collection of classes for dealing with permutations and their associate
breakpoint graphs, performing reversals, calculating reversal distances and sorting permutations
by reversals. The interface of BAOBABLUNA, including a detailed list of the main executable

programs, is described in appendix A.

13The full documentation of Java technology is available online at http://java.sun.com.

93

Chapter 6. BAOBABLUNA

6.1 OPTIMIZATION OF MEMORY USE

When analyzing traces, for a reversal distance of about 20, we may need to handle more than 200
million partial traces at one step. Since the java standard data structures were inefficient and
rapidly saturated when dealing with this amount of data, we needed to develop a new structure,

that we called CompressibleSortedSet.

6.1.1 The compressible sorted set

The CompressibleSortedSet can store more elements than the standard data structures due
to its internal organization, that allows automatic partial compression of its data. In general,
insertions in a CompressibleSortedSet are not processed one by one, but accumulated and then
processed in batch mode, from time to time.

Internally, the elements are stored in subsets, such that for any pair of subsets S7 and Ss,
either all elements in S; are smaller than all elements in S5, or all elements in S are greater than
all elements in So. The elements in a subset are sorted in ascending order, and the scope of a
subset is given by its first and last elements. The subsets themselves are also sorted in ascending
order. Searching an element (or the position to insert an element) in a CompressibleSortedSet
is done by a double application of the binary search method [39], that is, a first binary search
is performed to determine in which subset the element may be inserted, then a second binary
search is performed in the selected subset, to determine the exact insert position. In addition,
each one of the subsets can be in compressed or uncompressed state. The scope of a subset is
visible even when it is compressed, so it is possible to know whether a new element should be
inserted in a subset or not.

Inserting an element in an uncompressed subset is immediate. However, if the subset is
compressed, the element is kept in a pending list for a while. After a certain number of insertions
in an compressed subset, the subset is uncompressed and all the elements in the pending list
are inserted at once (this procedure amortizes the cost of uncompressing a subset). The number
of uncompressed subsets is limited, thus generally a subset decompression may cause another
subset compression. At any time, the uncompressed subsets are those which were accessed later.

Figure 32 illustrates the structure of CompressibleSortedSet.

94

6.1. Optimization of memory use

CompressibleSortedSet
compressed subsets uncompressed subsets
memory
st | ||| |lul III III I-I III Il I-I III
T~ N | /7 =

RN 7
NV

& first element
m last element

hard disk

— compressed subset pending list

Figure 82: The structure of CompressibleSortedSet.

When an internal subset of CompressibleSortedSet achieves a certain number of elements,
it is splitted in two. The split operation is done according to a given balance z, such that
0 < z < 1. If the original subset has n elements, it is splitted in two subsets such that the
first nx elements of the original subset are put in one new subset and the last n(1 — z) elements
are put in the other new subset. The default value of the balance is 0.5. However, in some
applications, it can be interesting to define a different value, thus the balance is a parameter
of CompressibleSortedSet. The maximum number of uncompressed subsets, the maximum
number of elements in a subset and the maximum number of elements in a subset pending list
are also parameters that can be defined. The operations of compression, decompression and split

of a subset are represented in Figure 33.

The compression of a subset is done as follows: first we may concatenate all elements of
the subset in a bidimensional array of bytes, then we compress each line of the resultant array.
The compressed data is written in the hard disk, so the memory that the elements occupied
can be released. The algorithm of compression is for general purpose, implemented in package
java.util.zip (classes Deflater and Inflater) using the ZLIB compression library. The ZLIB com-

pression library is not protected by patents and is fully described in the specifications at the

95

Chapter 6. BAOBABLUNA

insertion (1) insertion (2)
l l subset scope:
— el =1 | [- n first element
I I I I-I I | H
aui| (1ol | |l III III I-I Il n n = compressed
s T subset
ending list
split P 9
(balance=0.5)
compress g?gg;" compress

4 e 4 e 4
[m— g yo— S g | — | |

Ny
|]
st |1ull| [Iul III I-I III III III IlI IlI II|

S

Figure 33: An insertion in o CompressibleSortedSet may launch a subset decompression (when the
subset is compressed and its pending list is completely filled, such as insertion 1) or a subset split (when
the subset is decompressed and the mazimum number of elements in the subset is achieved, such as
insertion 2). A subset decompression or split may eventually launch another subset compression, if the
mazimum number of decompressed subsets is achieved.

java.util.zip package description'®.

6.1.2 Freezing operations

Besides the class CompressibleSortedSet, the implementation of the algorithm that enumerates
traces also perform additional I/O operations between iterations to save memory. At the end of
an interation ¢, the i—traces are registered in the hard disk, by a procedure that we call freezing.
Then, in the following iteration i + 1, the i—traces are read little by little from the hard disk to

generate the (i + 1)—traces.

6.1.3 Performance

The standard implementation of the algorithm that enumerates traces in BAOBABLUNA, that we
call Compression+Freezing, uses the class CompressibleSortedSet and freezing operations
between iterations to save memory.

In order to evaluate the performance of this implementation with respect to memory use

14See the java API of the package java.util.zip in http://java.sun.com.

96

6.2. Architecture

and execution time, we have done a comparison with three other implementations of the same
algorithm that enumerates traces (two of them uses the class java.util.TreeSet, which is a
java standard implementation of a sorted set, instead of CompressibleSortedSet to store traces).

The three test versions are:

e Compression: uses the class CompressibleSortedSet but does not use freezing opera-

tions between iterations.
e TreeSet: uses the class TreeSet and does not use freezing operations between iterations.
e TreeSet+Freezing: uses the class TreeSet and freezing operations between iterations.

We run the standard version and the three test versions for computing traces of three different
permutations. The implementations that use the class CompressibleSortedSet (the standard

Compression+Freezing and the test version Compression) were set with the following parameters:
1. Maximum number of elements by compressible subset: 3,000
2. Maximum number of uncompressed subsets: 400
3. Maximum number of elements in the pending insertion list of each compressed subset: 200

All experiments were made on a 64 bit personal computer with two 3GHz CPUs and 2GB
of RAM. Experimental results show that the standard implementation (Compression+Freezing)
indeed saves a considerable amount of memory (see Figure 34).

In addition, as we can see in Table 23, the results show that, although CompressibleSortedSet
may proceed several compressions, decompressions and I/O operations to register and read com-
pressed subsets in the hard disk, it runs at least as fast as TreeSet (freezing operations takes
longer with TreeSet, because this implementation registers and reads each trace individually,
while CompressibleSortedSet can register and read the elements in a compressed subset at

once). This indicates that the amortization provided by insertion pending lists works well.

6.2 ARCHITECTURE

All executable programs in BAOBABLUNA have the same multilayered architecture 21|, orga-

nized in two layers. The topmost level is responsible for the user interface. The programs in

97

Chapter 6. BAOBABLUNA

Performance of standard and test implementations with respect to memory use

§ B B Compression+Freezing
O Compression
E TreeSet+Freezing
B TreeSet
o
S
[le]
o
o
>
Ke)
=
>
o
g 8
(9] <
1S
kel
[0
[72)
)
o
S
(9]
o 4

i—trace computing

Total number of i—traces
‘2‘3‘4‘5‘6‘7‘8 9‘10‘11‘12‘13‘
690 | 6331 | 38986 | 172257 | 567851 1413316 | 2669032 | 3824570 | 4047048 | 3298406 | 1958839 | 567524
Figure 84: The memory use of standard implementation and test versions when computing the 13—traces
that sort (—12,11,—-10,6,—5,13,2,7,8,—9,14,—15,3,4,—16, 1), which is permutation g in table 23.
The labels in the X axis indicates the beginning of i—traces computing in the execution of each implemen-
tation (for i = 2,3,...,13; the total number of i—traces is given below the graphic). The valleys in some
lines are between each pair of iterations i — 1 and i, and are more accentuated for the implementations
that perform freezing operations. This graphic shows that Compression versions are more stable with
respect to memory use and, for greater amounts of data, use much less memory than TreeSet versions.
The BAOBABLUNA standard implementation (Compression+Freezing) has the best performance among
all implementations.

BAOBABLUNA have a light textual interface, described in Appendix A. The second layer is re-
sponsible for implementing the logic behind the applications. Thus, all the algorithms described
in this manuscript are implemented in the second layer. The dependency relation of these two
layers are from top to bottom, that is, the second layer has no dependency with respect to the

top layer. In addition, theses two layers depend on the core library of BAOBABLUNA, mostly

98

6.2. Architecture

Input (7) d(n) N7 Implementation Execution time

Compression+Freezing 2~ 27 seconds

TR Compression ~ 25 seconds
n =13 10 2,151 TreeSet+Freezing ~ 31 seconds
TreeSet ~ 25 seconds
Compression+Freezing 2~ 7.3 minutes
TG Compression ~ 7.1 minutes
n =16 12 21,902 TreeSet+Freezing ~ 8.7 minutes
TreeSet ~ 7.2 minutes
Compression+Freezing =~ 4.1 hours
TH Compression ~ 4.1 hours
n = 16 13 567,524 TreeSet+Freezing ~ 4.8 hours
TreeSet ~ 4.2 hours

Table 23: Computation results. Columns from left to right contain: 1- the input (permutation and
number of markers); 2- the reversal distance; 3- the number of traces; 4- the implementation; 5- the
execution time of the implementation. All implementations of the algorithm are part of the BAOBABLUNA
package. The three analyzed permutations are np = (—12,11,-10,6,13,-5,2,7,8,-9,3,4,1),
TG = (—12,11,-10, 1,16, —4, 3,15, 14,9, -8, —7,—2,—13,5,—6), and =g =
(—12,11,-10,6,-5,13,2,7,8,—9, 14, —15,3,4, — 16, 1).

composed by a component to deal with permutations, their corresponding breakpoint graphs and
reversals, a component to deal with traces, and a utilitary component that contains the class
CompressibleSortedSet. There is no dependency between these three components of the core

library. The pattern of architecture of BAOBABLUNA is illustrated in Figure 35.

The organization of the architecture in components with well defined dependency relations
favors the development and maintainance of BAOBABLUNA. If a component X depends on an-
other component Y, then the modifications done in Y can affect X. On the other hand, if X
does not depend on Y, then the modifications done in Y does not affect X. Observe that each
component in the core library does not depend on any other component of BAOBABLUNA and,
consequently, is not affected by the modifications done outside itself. Moreover, the separation
of the user interface from the application logic permits the substitution of the interface with no
consequences to the other components. Neither the application logic nor the core library depend
on the user interface, thus modifying the interface does not affect the remaining components of

BAOBABLUNA.

99

Chapter 6. BAOBABLUNA

Core library
Permutations
Breakpoint graphs
Topmost Textual user Reversals
layer interface
i \ Traces
—>
Second . . .
layer Application logic X
\\-’_) Compression
—

Figure 35: The pattern of the architecture of executable programs in BAOBABLUNA. The components are
represented by rectangles. The lines separate the two layers of the architecture and the core library, which
is transversal to the layers. An arrow from a component A to a component B indicates that A depends
on B.

6.3 TEST

An important issue when implementing a program that deals with a huge amount of information
is preventing erroneous results, that are very hard to detect. A good strategy to solve this
problem is the use of an auditor, that is a program that contains an alternative implementation
that may produce the same result as the implementation which is being tested. The auditor can
also contain errors, but it is very improbable that it reproduces exactly the same errors as the
tested implementation, so when both lead the same results, we assume that both are correct, at
least for the examined test cases.

In BAOBABLUNA we implemented auditors for the two main critical points. One is the
algorithm that generates directly the traces of sorting sequences (Algorithm 5), that here we call
traceStandard. In this case, the auditor is the program that generates traces by generating
all sorting sequences (Algorithm 4), named traceAuditor, that was also used to evaluate the
performance of traceStandard in Chapter 4. Observe that traceAuditor can not process all
the permutations that are processed by the traceStandard, that is, with respect to the auditor,
traceStandard is able to process permutations with higher reversal distances. Nevertheless,
traceAuditor can be used as a good indicator of the quality of traceStandard. The second

critical point is the class CompressibleSortedSet, whose auditor is the class TreeSet, which is

100

6.4. Download and setup

a java standard implementation of a sorted set. The class TreeSet was also used to evaluate the
performance of CompressibleSortedSet with respect to memory use, as we saw in Section 6.1.1.

All versions of BAOBABLUNA were tested by these two auditors for a set of 8 test permutations
(see Table 24), that helped us to find several errors during the implementation process. The errors

were fixed, and the versions were released only after being aproved by these test cases.

Permutation () d(m) N Ng
ma=(-3,2,1,-4) 4 2 28
g = (—4,1,-3,6,—7,-5,2) 6 5 204
e =(—6,5,7,—1,—4,3,2) 6 8 496
p = (—4,-3,12,-11,-8,10,9,7, -6, —5,2, —1) 8 6 31,752
g =(—4,3,12,-11,-8,10,9,7, -6, 5,2, —1) 9 14 407,232
mr = (—12,11,-10,6,13,-5,2,7,8,-9,3,4,1) 10 2,151 8,278,540
e = (—12,11,-10,-1,16, —4, 3,15, —14,9, -8, —7,—2, —13,5, —6) 12 21,902 505, 634, 256
g = (—12,11,-10,6,-5,13,2,7,8,—9, 14, —15,3,4,—16,1) * 13 567,524 40,313,272,766

Table 24: Test cases used to assure the quality of BAOBABLUNA. In all released versions, traceStandard
and its auditor traceAuditor, as well as CompressibleSortedSet and its auditor TreeSet lead to
the same results when computing traces for these test cases. (*)Due to its huge number of sorting
sequences, the last permutation can not be processed by traceAuditor and was only used to audit
CompressibleSortedSet.

6.4 DOWNLOAD AND SETUP

The package BAOBABLUNA is available at http://pbil.univ-lyonl.fr/software/luna/ for
online download, encapsulated in a .jar file (Java ARchive format). Together with the Java 6
standard library!'S, this file contains all required resources to run the programs described in this
manuscript. The current version of BAOBABLUNA, named 1.1 beta, was released on November
2008'6. A tutorial for downloading and running the programs is available in Appendix A.

For java programmers, the API (application programming interface) of all classes in the pack-
age BAOBABLUNA can also be downloaded at http://pbil.univ-1lyonl.fr/software/luna/.

The package containing the class CompressibleSortedSet is part of BAOBABLUNA. However,

although CompressibleSortedSet was conceived for dealing with traces, it is for general purposes

15 Java 6 must to be installed in the computer, in order to run the programs in BAOBABLUNA.
'6The first version of BAOBABLUNA, named 0.1 beta, was released on November 2006 and did not contain the
variants that deal with biological constraints.

101

Chapter 6. BAOBABLUNA

and is able to store any kind of object. For java programmers interested in this functionality,
a subpackage containing only these features is available at http://biomserv.univ-lyonl.fr/

“marilia/compressible.htm.

6.5 FINAL REMARKS

In this chapter we presented BAOBABLUNA [16], a framework to deal with permutations, their
corresponding breakpoint graphs, and reversals, that contains all algorithms described in this
manuscript. In order to be able to handle the huge amount of data when computing traces,
the implementation of BAOBABLUNA optimizes the memory use with compression and freezing
operations, that were shown to save a considerable amount of memory without losing in execution
time. The core library of BAOBABLUNA is mostly composed by three independent components,
one that deals with permutations, breakpoint graphs and reversals, one that deals with traces,
and one that deals with compression. In addition, the architecture of all the executable programs
BAOBABLUNA is organized in two layers, a topmost layer with the user interface and a second

layer with the application logic, that encloses our algorithms.

102

Chapter 7

Conclusions, limitations and

perspectives

Summary

7.1 Mainresults. 0 e e e e e e e 103

7.1.1 An algorithm to enumerate all the traces 103

7.1.2 Biological constraints L. Lo Lol 104

7.1.3 Applications e e e 106

7.1.3.1 Analysis of the human sexual chromosomes X and Y 106

7.1.3.2 Analysis of the Rickettsia bacterium 107

7.1.4 BAOBABLUNA e 107

7.2 Limitations @ o i i i i it i e e e e e e e e e e e 108

7.3 Future perspectives o i v i it it ittt e e e e e e 108

7.1 MAIN RESULTS

7.1.1 An algorithm to enumerate all the traces

We studied the algorithmic aspect of a common problem in genome rearrangements, called sorting
a genome by reversals, which consists in finding an optimal sequence of reversals that transforms
one genome into another. When only genomes without gene duplications are considered, there

are efficient algorithms to find a unique solution [32].

103

Chapter 7. Conclusions, limitations and perspectives

We worked mostly on the problem of exploring the space of all optimal sequences of reversals
that sort one genome into another. The universe of all sorting sequences can be enumerated
thanks to an algorithm by Siepel [59]. However, the number of different sorting sequences is
usually huge, and we developed an algorithm that builds a compact representation of the space of
sequences, using a model previously proposed by Bergeron et al. to group the sorting sequences
into equivalence classes called traces [9]. This algorithm, that is one of the most important
results of our work, gives one representative and the number of sequences in each trace without
enumerating all sorting sequences [18].

We also showed that, for any permutation 7 that has at most one unoriented component,
we can compute the set of traces that sort each component of 7 independently, and then obtain
the traces sorting 7 by multiplying the traces sorting its components. This approach runs faster

than computing directly the traces.

7.1.2 Biological constraints

We then proposed the use of different biological constraints to reduce the universe of sequences
and classes, and showed how to apply these methods to analyze real cases in evolution. One
of these constraints is the list of common intervals, which are the clusters of co-localised genes
between the considered genomes - an optimal sequence of reversals that does not break the
common intervals may be more realistic than one that does break them [26]. We used common
intervals in two different approaches, one that searches for perfect sorting sequences [18], that
is, sequences that do not break the common intervals detected between the two initial genomes,
and one that searches for progressive perfect sorting sequences, that do not break the common
intervals progressively detected [17] when sorting a genome into another. Other constraints were
defined according to the practical problems we were interested in. In particular, we are able to
characterize the reversals with respect to the replication terminus in circular chromosomes (this
method was used to analyze the evolution of the Rickettsia bacterium), and to apply a constraint
to analyze directly the stratification process in the evolution of the sexual chromosomes X and
Y in human [18, 41].

The complexities of the algorithms taking into account the initial or the progressive detection

of common intervals and the strata on the XY chromosomes were examined and were proven

104

7.1. Main results

to be the same as for the original algorithm, that enumerates all the traces. Moreover, several
experiments show that all the variants that take biological constraints in consideration run faster
than the algorithm that generates all the traces.

All the constraints were analyzed qualitatively, in order to determine whether they were
symmetric (when the results of the analysis of the sequences sorting a first genome into the
second can be obtained from the analysis of the sequences sorting the second genome into the
first) or asymmetric. We argued that when a constraint is asymmetric, it can only be applied
when the relation ancestor-descendant between the analyzed genomes is known and, in this case,
a direction to the analysis must be defined. We summarize below the characteristics of each one

of the constraints that we considered.

1. Initial detection of common intervals without interval breaks: can be applied to linear or

circular chromosomes and is symmetric.

2. Initial detection of common intervals with a bounded number of interval breaks: can be ap-
plied to linear or circular chromosomes and is asymmetric (the relation ancestor-descendant
between the analyzed genomes must be known, and the analysis must be done from the

descendant to the ancestor).

3. Progressive detection of common intervals without or with a bounded number of interval
breaks: can be applied to linear or circular chromosomes and is asymmetric (the relation
ancestor-descendant between the analyzed genomes must be known, and the analysis must

be done from the descendant to the ancestor).
4. Terminus-symmetry: can be applied only to circular chromosomes and is symmetric.

5. Strata on serual XY chromosomes: can be applied only to linear chromosomes and is

conceptually asymmetric (the analysis must be done from the X to the Y chromosome).

Moreover, we showed that some constraints can be applied together, under the condition that
they are compatible. If one or more symmetric constraints are applied together with at least one
asymmetric constraint, the resulting approach is asymmetric.

Initial and progressive detection of common intervals are alternative approaches, that can

not be applied together. When interval breaks are not accepted, initial detection of common

105

Chapter 7. Conclusions, limitations and perspectives

intervals is symmetric and can be combined with terminus-symmetry or strata constraints. The
initial detection of common intervals with a bounded number of interval breaks, as well as the
progressive detection of common intervals (with or without interval breaks), can be combined
with the terminus-symmetry constraint.

Strata and terminus-symmetry are incompatible because the first is proper to linear while
the second is proper to circular chromosomes. Strata is conceptually applied in the analysis from
the X (closer to the ancestor) to the Y chromosome and is also incompatible with the progressive

detection of common intervals, that must be applied from the descendant to the ancestor.

7.1.3 Applications

We applied our method to analyze two real cases, the evolution of the human sexual chromosomes
X and Y and the evolution of the Rickettsia bacterium, which is an intracellular parasite. We
obtained a better characterization of the evolutionary scenarios of these genomes, with respect

to the results of previous studies [13, 55|, that were based on a single sorting sequence.

7.1.3.1 Analysis of the human sexual chromosomes X and Y

In the analysis of the human sexual chromosomes X and Y, Ross et al. [55] proposed a particular
stratification on the X and used a unique sorting sequence as an argument to support the observed
strata. However the existence of other traces that could produce the same strata and the existence
of other strata boundaries were not examined. Using our algorithm to generate traces and strata
on the X chromosome as a parameter, we developed a method that uses the bounds of the given
strata to search directly the subtraces of sequences that sort X into Y and produce these strata
on the X. With this method, we could test different hypotheses of stratification. In particular,
we could verify that all sequences sorting X into Y according to the strata proposed by Ross et
al. [55] are in the same subtrace. So if we suppose that these bounds are accurate, the reversals
in the sequence given in [55] were identified correctly.

However, the permutations representing the X and Y chromosomes as proposed by Ross et
al. [55] cover only the first 11.2Mbps on the X, and even for this small portion of the chromosome
there are alternative strata boundaries. Moreover, if we extend the permutations to cover a

bigger portion of the chromosome, the number of possibilities for placing the strata boundaries

106

7.1. Main results

increases. Indeed, only the boundary between the pseudo-autosomal region (PAR) and stratum
5 and the boundary between the strata 5 and 4 are well established. The other boundaries
are still controversial, and even the number of ancient strata is discussed. We participated
in a collaborative work of Lemaitre et al. [41], that presented more arguments to explain the
stratification process. In particular, our method of searching for strata-induced subtraces was
used to analyze extended permutations representing the human X and Y chromosomes, in order
to verify some hypotheses for placing the boundary between strata 4 and 3, and as part of a
probabilistic analysis, that indicated that the occurrence of a sequence of reversals that stratified
the human X chromosome is more likely to be true than the occurrence of a sequence of reversals

that did not.

7.1.3.2 Analysis of the Rickettsia bacterium

The evolutionary scenario of six species of the Rickettsia bacterium was reconstructed by Blanc
et al. [13] and in particular one arbitrary optimal sequence of reversals was proposed to sort the
ancestor R2 into Rickettsia felis. This sequence is composed by five external and four terminus-
symmetric reversals. We could analyze the universe of all sorting sequences between these two
genomes, and, searching for solutions with at most 3 external and no terminus-asymmetric
reversals, with the threshold of 0.7 to the terminus-symmetry rate, combined with the progressive
detection of common intervals accepting two interval breaks, we found three subtraces whose
sorting sequences have three external and six terminus-symmetric reversals [17], obtaining a

better characterization of the evolutionary scenario of these genomes than Blanc et al. [13].

7.1.4 BAOBABLUNA

All the algorithms developed in this work are implemented, integrated to BAOBABLUNA [16], a
java framework to deal with genomes and reversals. Download and tutorial for BAOBABLUNA are
available on-line. In order to be able to deal with the huge amount of data when constructing
traces, we developed a structure that is able to efficiently compress and store the traces in a
sorted set during the construction. We compared the performance of this structure with a java
standard implementation of a sorted set, showing that we are able to save memory without

losing in the execution time. With BAOBABLUNA, we run experiments of all the variants of our

107

Chapter 7. Conclusions, limitations and perspectives

algorithm, showing the gain in the execution time when the biological constraints are applied.

7.2 LIMITATIONS

The algorithm to generate directly the traces represents an important improvement with respect
to the enumeration of all optimal sorting sequences. However, for permutations with a reversal
distance above a certain value, the universe of traces is too big for being interpreted and often
it can not be computed, even with the optimization in the memory use in the implementation
of BAOBABLUNA. Indeed, we are not able to compute traces for permutations with a reversal
distance of about 20 or higher.

The use of biological constraints is a good strategy to reduce traces while selecting sequences
of reversals that are biologically more meaningful. However, there is no guarantee that a sequence
that respects the given contraints exists, thus this approach may lead to empty results, which is
undesirable. Relaxing the biological constraints in order to obtain a non-empty result is generally
possible, but this approach may require several essays of the relaxing parameters, which costs
computation time.

Moreover, the terminus-symmetry, that is one of the most promising constraints, has some
other limitations. The choice of the values for the parameters p (the maximum number of external
reversals), ¢ (the maximum number of terminus-asymmetric reversals) and r (the threshold for
the terminus-symmetry rate) is not trivial and often requires several essays. In addition, we adopt
some simplifications such as ignoring the space between markers and the replication terminus
shift produced by each terminus-asymmetric reversal. We must have these simplifications in

mind when interpreting the results of the analyses.

7.3 FUTURE PERSPECTIVES

Concerning the program to analyze traces, other specific constraints can be introduced. The
challenge here is to know more details about the evolutionary process of relatively close related
organisms, and isolate properties that could be used to select reversals at each step of the trace

construction.

108

7.3. Future perspectives

The program with the constraints that are currently implemented, specially the versions that
account for the progressively detected common intervals, and for different types of reversals with
respect to the replication terminus in circular chromosomes, can also be applied in the analysis
of other real cases. We believe that it can reveal interesting details in the rearrangement process
of circular chromosomes, but, since the implementation is not able to deal with genomes whose
reversal distance is greater than 20, the challenge is to find genomes with the required charac-
teristics. A good candidate is the bacterium Mycbacterium, whose ancestor was reconstructed
recently [30], which allows us to use, as we did in the analysis of Rickettsia, an asymmetric
approach combining the progressively detected common intervals and the terminus-symmetry.

Moreover, the variant that takes the replication terminus of circular chromosomes into account
have some limitations and could be improved. An idea is to continue to limit the number of
external reversals, but instead of limiting the number of terminus-assymetric reversals, we would
limit the displacement of the replication terminus to the left or to the right of the chromosome
center by a given A. This idea is illustrated in Figure 36. The advantage of this approach is
that, after applying a reversal that moves the replication terminus, it would favor the choice of
a reversal that compensates the previous displacement, that is, the chronology of the reversals

would be more strongly constrained.

EB] » JE e S 1 8 1 S0 YT SR
EB] b JE R 1 30 3 o> I 1
[OEE T b6 €@ N T N
[OEPGED T b s o E NS ©
[OEPGED T b @) 5 PO (i T
[OEME T b @@] P 5 [T
[OEMED « O EDGE s By SIS ©
[2D [@S Gl <) ‘] o i —
EB] 5 Senl i O o Lan| 5] 5 i [N
ERJEEY & L OF o Ken| 5] OF i L S—r
a2 ab

Aa<A ; Ab<A

Figure 86: Limiting the displacement of the replication terminus in a circular chromosome by a given A.

109

Chapter 7. Conclusions, limitations and perspectives

The variant that searches for strata-induced subtraces can be applied to the study of sexual
chromosomes of other species. Very poor data is available currently, but we expect that we will

dispose of more and more sequences of sexual chromosomes of different species in the near future.

110

Appendix A

BAOBABLUNA 1nterface

Summary
A.1 The text representation for the breakpoint graph 111
A2 Download and setup ¢ v v v v i v i i i i i e e e e e e e e 112
A.3 Running executable programs ¢ v v vt i v i e e e 112
A.3.1 baobab.exec.permutation.analyzeSignedPermutation 113
A.3.2 baobab.exec.permutation.sort L.l 114
A.3.3 baobab.exec.permutation.performReversals. 115
A.3.4 baobab.exec.permutation.decomposeSignedPermutation 115
A 3.5 baobab.exec.trace.analyzeTraces o v v v vt oo 0 115

The software BAOBABLUNA, described in chapter 6, is a java framework to deal with permu-
tations. It contains a collection of classes for building breakpoint graphs, performing reversals,
calculating reversal distances, sorting permutations and analyzing traces (with and without bi-
ological contraints).

In this appendix we describe the BAOBABLUNA interface, including a list with the main
executable programs.

A.1 THE TEXT REPRESENTATION FOR THE BREAKPOINT GRAPH

An important feature of BAOBABLUNA interface is a text representation of the breakpoint graph.
In this text form, a breakpoint graph = is represented by a string with four lines. The first line
assigns an index from 1 to pts(m) to each black edge. The second line represent the black edges’
cycles and directions ‘>’ or ‘<’ (two positions with the same value in the second line represent
two black edges in the same long cycle; ‘... represents an adjacency). The third line represent
the gray edges of the cycles, since each position in the third line indicates the subsequent black
edge in a tour through the cycle (again, ...’ represents an adjacency). The fourth line contains
the permutation and the number of cycles in the graph. Figure 37 shows the graphical and the
text representation of the breakpoint graph of a permutation.

The text representation of breakpoint graphs is largely used in our executable programs. It
is implemented by the class baobab.bio.permutation.PermutationBPGraphFormatter.

111

Appendix A. BAOBABLUNA interface

(A) Graphical representation

gray edges

-04777-03 7 412 - 117 - 087 104097 +07-06 =05 T +02F-01F:: 5 cycles
01 02 03 04 05 06 07 08 09 10 11 12 13 index line

(B) Text representation

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13. 1)
01> ... 01> <01 03> <02 <03 <02 02> ... 01> <01 <01 (2
(11 ... :04 :13 :07 :09 :05 :06 :08 ... :12 :03 :01 (3)
:: -04 -03 +12 -11 -08 +10 +09 +07 -06 -05 +02 -01 :: 5 cycles (4)

Figure 37: The graphical (A) and the text (B) representations of the breakpoint graph for the linear
permutation T = (—4, 3,12, —11,-8,10,9,7,—6, —5,2, —1). In the text form of this graph (B), the lines
represent: (1) an index line identifying the black edges (points); (2) the black edges, with each cycle tour
in an arbitrary direction (the numbers represent the long cycles, two black edges with the same number
are in the same cycle); (3) the gray edges, with each cycle tour in the direction induced by black edges’
direction; (4) the permutation. A ‘...’ in lines (2) and (3) represents an adjacency.

A.2 DOWNLOAD AND SETUP

The package BAOBABLUNA is available at http://pbil.univ-1lyonl.fr/software/luna/ for
online download, encapsulated in a .jar file (Java ARchive format). Together with the Java
6 standard library, this file contains all required resources to run all the algorithms described
in this manuscript. For java programmers, the API (application programming interface) of all
classes in the package BAOBABLUNA can also be downloaded at http://pbil.univ-1lyonl.fr/
software/luna/.

In order to run the executable programs in BAOBABLUNA, Java SE 6.0 must to be in-
stalled in the computer. Suppose the file that encapsulates the package BAOBABLUNA is called
baobab-luna.jar and was downloaded into a directory called $path. First we must get into
the directory $path (>cd $path). Then, to run a program called $program, the command is as
follows:

>java -classpath baobab-luna.jar $program.

A.3 RUNNING EXECUTABLE PROGRAMS

The package BAOBABLUNA contains a list of executable programs to deal with signed permuta-
tions that represent genomes in bioinformatics. Those programs are useful for analyzing permuta-
tions over several aspects (calculating reversal distance, finding the components of the breakpoint
graph, analyzing traces). Each executable has a particular list of parameters, and, to get the
help, we must run the program without arguments (see an example in Figure 38).

All the programs described here analyze a pair of signed permutations, thus the following
parameters are common to all of them:

112

A.3. Running executable programs

>java -classpath baobab-luna.jar baobab.exec.permutation.sort
Sorts the given signed permutation
Required parameters:

-o originPermutation (values separated by commas, without spaces)
Ex: -o -4,-3,12,-11,-8,10,9,7,-6,-5,2,-1

Optional parameters:

-t targetPermutation (values separated by commas, without spaces)
Ex: -t 5,-3,12,10,9,8,-11,7,-6,-4,2,-1

-1 T/F (T=linear [default], F=circular)
Ex: -1 F

Figure 38: Get the help of a program in BAOBABLUNA.

e -0 [permutation]: the origin permutation m = (71, 7o, ..., Th—1,7,). The values must be
separated by commas, without spaces.
Example: -0 -4,-3,12,-11,-8,10,9,7,-6,-5,2,-1

e -t [permutation]: the target permutation m7. The values must be separated by commas,
without spaces. This parameter is optional and if it is ommited, nr is assumed to be
I, =(1,2,3,...,n).

Example: -t 5,-3,12,10,9,8,-11,7,-6,-4,2,-1

e -1 T/F: a parameter to indicate whether the origin and target permutations are linear
(T) or circular (F). This parameter is optional and if it is ommited, the permutations are
assumed to be linear.

Example: -1 F

Now we will give a list with the main executable programs that are part of our framework.

A.3.1 Dbaobab.exec.permutation.analyzeSignedPermutation

Analyzes a signed permutation and prints its breakpoint graph and reversal distance (see Fig-
ures 39 and 40).

>java -classpath baobab-luna.jar baobab.exec.permutation.analyzeSignedPermutation -o -3,2,1,-4

1. 2. 3. 4. b.
1> <1 1> <1 1>
6 :3 :1 :2 :4

:: -3 +2 +1 -4 :: 1 cycles
of points........: b
of cycles........: 1
of components....: 1
> ajacencies...... : 0
> oriented comp...: 1

> unoriented comp.: 0

Reversal distance..: 4

Figure 39: Analyze the linear permutation (—3,2,1,—4).

113

Appendix A. BAOBABLUNA interface

>java -classpath baobab-luna.jar baobab.exec.permutation.analyzeSignedPermutation -o -3,2,1,-4 -1 F

1. 2. 3. 4.
1> <1 1> ..
:3 :1 :2 ..
:t -1 -2 +3 +4 :: 2 cycles

of points........: 4
of cycles........: 2
of components....: 2
> ajacencies......: 1
> oriented comp...: 1

> unoriented comp.: 0

Reversal distance..: 2

Figure 40: Analyze the circular permutation (—3,2,1,—4) (observe that the circular permutations
(—3,2,1,—4) and (—1,—2,3,4) are equivalent).

A.3.2 Dbaobab.exec.permutation.sort

Sorts the given signed permutation (see Figures 41 and 42).

>java -classpath baobab-luna.jar baobab.exec.permutation.sort -o -3,2,1,-4

1. 2. 3. 4. 5.
1> <1 1> <1 1>
5 :3 :1 :2 :4
1t -3 42 +1 -4 :: 1 cycles

Reversal distance: 4
Solution:

1. 2. 3. 4. 5.
1> <1 1> <1 1>
:5 :3 :1 :2 :4
1t -3 42 +1 -4 :: 1 cycles
_— (from [1] -3 to -3 [2])
1. 2. 3. 4. 5.
2> <1 2> <1 1>
:3 :5 :1 :2 :4
1t 43 42 +1 -4 :: 2 cycles
_________ (from [2] +2 to -4 [5])
1. 2. 3. 4. 5.
2> L. 1> <2 1>
4 .. :5 :1 :3
: +3 +4 -1 -2 :: 3 cycles
_________ (from [1] +3 to -1 [4])

:: +1 -4 -3 -2 :: 4 cycles
_________ (from [2] -4 to -2 [5])

:: +1 42 +3 +4 :: b cycles

Figure 41: Sort the linear permutation (—3,2,1,—4).

114

A.3. Running executable programs

>java -classpath baobab-luna.jar baobab.exec.permutation.sort -1 F -o -3,2,1,-4
1. 2. 3. 4.
1> <1 1> ..
13 :1 :2 ..
:: -1 -2 43 +4 :: 2 cycles
Reversal distance: 2
Solution:
1. 2. 3. 4.
1> <1 1> ..
13 :1 :2 ..
:: -1 -2 43 +4 :: 2 cycles
- (from [1] -1 to -1 [2])
1. 2. 3. 4.
<1 1> L.
.13 :2 ..
: 41 -2 43 +4 :: 3 cycles
- (from [2] -2 to -2 [3])
1. 2. 3. 4.
i 41 +2 +3 +4 :: 4 cycles

Figure 42: Sort the circular permutation (—3,2,1,—4) (observe that the circular permutations
(—3,2,1,—4) and (—1,-2,3,4) are equivalent).

A.3.3 baobab.exec.permutation.performReversals

Performs a sequence of reversals in the given order. Each reversal is given by a pair of integers
i, where i is the index of the point that corresponds to the first extremity to the reversal and
j is the index of the point that corresponds to the last extremity to the reversal (i < j). Each
pair of reversals must be separated by a ‘|’, without spaces. An example is given in Figure 43.

A.3.4 baobab.exec.permutation.decomposeSignedPermutation

Decomposes a breakpoint graph of a signed permutation into its components. In each part, only
one component with long cycles is preserved, the others are properly replaced by adjacencies (see
Figure 44).

A.3.5 baobab.exec.trace.analyzeTraces

Enumerates the traces of all sorting sequences of reversals for the given signed permutation.

This program enumerates all traces without enumerating all solutions, and counts the number

of solutions represented by each trace. It returns the list of traces represented by their normal

forms and the respective number of solutions in each trace. We can apply constraints to the

trace construction, according to the evolutionary properties of the correponding genomes.
Attention:

1. This program does not deal with fortresses.

2. The number of traces may be huge for permutations with reversal distance greater than
12. During its execution, the program has to keep a considerable amount of data, but its
intern organization allows automatic partial compression of this data (see more details in
Section 6.1.1 of Chapter 6). There are parameters to set the level of compression:

115

Appendix A. BAOBABLUNA interface

>java -classpath baobab-luna.jar baobab.exec.permutation.performReversals
-o -4,-3,12,-11,-8,10,9,7,-6,-5,2,-1 -r "11,13]3,13"

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13.

01> ... 01> <01 03> <02 <03 <02 02> ... 01> <01 <01
:11 ... :04 :13 :07 :09 :05 :06 :08 ... :12 :03 :01
: -04 -03 +12 -11 -08 +10 +09 +07 -06 -05 +02 -01 :: 5 cycles

Reversal distance: 8

Reversals:

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13.

01> ... 01> <01 03> <02 <03 <02 02> ... 01> <01 <01
:11 ... :04 :13 :07 :09 :05 :06 :08 ... :12 :03 :01
:: -04 -03 +12 -11 -08 +10 +09 +07 -06 -05 +02 -01 :: 5 cycles

———————— (from [11] +02 to -01 [13])
01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13.

04> ... 01> <01 03> <02 <03 <02 02> ... 04> 01> <01
11 ... :04 :13 :07 :09 :05 :06 :08 ... :01 :03 :12
:: -04 -03 +12 -11 -08 +10 +09 +07 -06 -05 +01 -02 :: 6 cycles

—— (from [03] +12 to -02 [13])
01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13.

04> ... 05> <05 <04 ... <02 02> 03> 02> <03 01> <01
:05 ... :04 :03 :01 ... :08 :10 :11 :07 :09 :13 :12
: -04 -03 +02 -01 +05 +06 -07 -09 -10 +08 +11 -12 :: 7 cycles

Figure 43: Perform two subsequent reversals, the first with extremities in points 11 and 13 and the second
with extremities in points 3 and 13, on the linear permutation (—4,-3,12,—11,-8,10,9,7,—6, —5,2, —1).

e -X [integer]: maximum number of traces by compressible subset (default = 3000)
e -Y [integer]: maximum number of uncompressed subsets (default = 400)

e -Z [integer]: maximum number of rules in pending insertion list by compressed
subset (default = 200)

We give two examples of analyzing traces in Figures 45 and 46.
In order to construct the traces of a permutation by multiplying the traces of its components,
the parameter -e 0 must be given. Figure 47 shows an example of this approach.

Applying biological constraints

When a list of biological constraints C' is applied, the program analyzes the space of all sorting
sequences that respect the constraints in C' and construct C'—induced subtraces instead of full
traces. This program enumerates all non-empty C'—induced subtraces without enumerating all
solutions, and counts the number of solutions represented by each C'—induced subtrace. It returns
the list of non-empty C'—induced subtraces represented by the normal forms of the corresponding
traces and the respective number of solutions in each strata-induced subtrace.

1. Analyzing the perfect traces of a permutation: the parameter -p -1 may be given (see
Figure 48). The version of this program that accepts common interval breaks is not imple-
mented in BAOBABLUNA.

2. Analyzing the progressive perfect subtraces of a permutation, accepting at most i > 0
common interval breaks: the parameter -p i may be given (see Figure 49).

116

A.3. Running executable programs

>java -classpath baobab-luna.jar baobab.exec.permutation.decomposeSignedPermutation
-o -4,-3,12,-11,-8,10,9,7,-6,-5,2,-1

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13.

01> ... 01> <01 02> 03> <02 03> <03 ... 01> <01 <01

11 ... :04 :13 :07 :08 :05 :09 :06 ... :12 :03 :01

: -04 -03 +12 -11 -08 +10 +09 +07 -06 -05 +02 -01 :: 5 cycles
of points......: 13
of big comp....: 2
of cycles......: b

Reversal distance: 8

Component 1

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13.
. 03> <03 02> <03 <02 ...
e e e e :10 :07 :11 :08 :09 ...
1 401 +02 +03 +04 +05 +06 -07 -09 -10 +08 +11 +12 :: 10 cycles

of points......: 13
of big comp....: 1
of cycles......: 10

Reversal distance: 3

Component 2

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13.

01> ... 01> <01 01> <01 <01

11 ... 204 213 ... L.l el ol o.. ... 112 :03 :01

: -04 -03 +12 -11 -10 -09 -08 -07 -06 -05 +02 -01 :: 8 cycles
of points......: 13
of big comp....: 1
of cycles......: 8

Reversal distance: 5

Figure 44: Decompose the breakpoint graph of the linear permutation 7 into its two non-trivial components,
for m = (—4,-3,12,-11,-8,10,9,7, -6, —5,2, — 1.

3. Analyzing the (p, q,r)—induced subtraces of a permutation (apply the terminus-symmetry
constraint where p is the maximum number of external reversals, ¢ is the maximum num-
ber of terminus-asymmetric reversals and r is the threshold to the terminus-symmetry rate):
the parameter -h "p|q|r" may be given. Optionally, the parameter -w [originPermutation
lengths] can be set, to define the lengths of the markers with respect to the order given
in the origin permutation. The lengths are given in a list of double values separated by
commas, without spaces. Example: the parameters -o -2,3,4,-1 -w 1.5,2,3.8,2.4 as-
sign the length 1.5 to marker 2, 2 to marker 3, 3.8 to marker 4, and 2.4 to marker 1 (see
Figure 50).

4. Analyzing the strata-induced subtraces of a permutation: the permutation must be linear,
the first stratum is assumed to start in point 1, then each stratum starts in the end point
of the previous stratum. The strata end points may be given by the following parameter:
-s [points]: points may be separated by commas, without spaces. Example:

117

Appendix A. BAOBABLUNA interface

>java -classpath baobab-luna.jar baobab.exec.trace.analyzeTraces -o -3,2,1,-4
1. 2. 3. 4. 5.
1> <1 1> <1 1>
:5 :3 :1 :2 :4

1t -3 42 +1 -4 :: 1 cycles

summary:

Reversal distance: 4

4-traces:

{13{1.-.33{2}{4} : [24]
{1.2.4}{3} < {1.3.4} < {2.-.4} : [4]

Total number of 4-traces: 2
Total number of solutions: 28

Figure 45: Analyze traces of the linear permutation (—3,2,1,—4).

>java -classpath baobab-luna.jar baobab.exec.trace.analyzeTraces
-o -4,-3,12,-11,-8,10,9,7,-6,-5,2,-1

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13.

01> ... 01> <01 03> <02 <03 <02 02> ... 01> <01 <01

:11 ... :04 :13 :07 :09 :05 :06 :08 ... :12 :03 :01
:: -04 -03 +12 -11 -08 +10 +09 +07 -06 -05 +02 -01 :: 5 cycles
summary

Reversal distance: 8
8-traces

{1.2}{1.2.5.-.12}{2}{7}{8.103{12} < {1.-.4}{8.9} : [10080]
{1.-.12}3{2}{3.4.12}{5.-. 11{7}{8.10} < {3.-.11}{8.9} : [10080]
{1.-.12{2.-.121{2.5.- . 12}{7}{8.10}H{12} < {2.-.4}{8.9} : [10080]
{1.2}{7}3{8.10} < {1.5.-.11}{8.9} < {1.3.4.12} < {2.-.12}{3.-.11} : [336]
{2.-.12{73{8.10} < {1.3.4.12}{8.9} < {1.5.-.11} < {1.2}{3.-.11} : [336]
{2.5.-.12}{5.-.11}{7}{8.10} < {1.12}{8.9} < {1.5.-.11} < {1.-.4} : [840]

Total number of 8-traces: 6
Total number of solutions: 31752

Figure 46: Analyze traces of the linear permutation (—4,—3,12,-11,-8,10,9,7,—6,—5,2, —1).

-s 7,15,23 (see Figure 51).

5. Compatibility between constraints: some contraints are compatible and can be applied
together. For example, the terminus-symmetry (defined by the parameter -h) and the
initial or progressive detection of common intervals (defined by the parameter -p) can
be used simultaneously (see Figure 52). However, if we try to run the program applying
incompatible contraints, such as strata (parameter -s) together with progressive detection
of common intervals (parameter -p 0) the program will not be launched and an error
message will be written in the output (Figure 53).

118

A.3. Running executable programs

>java -classpath baobab-luna.jar baobab.exec.trace.analyzeTraces
-o -4,-3,12,-11,-8,10,9,7,-6,-5,2,-1 -e 0

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13.

01> ... 01> <01 03> <02 <03 <02 02> ... 01> <01 <01

:11 ... :04 :13 :07 :09 :05 :06 :08 ... :12 :03 :01

: -04 -03 +12 -11 -08 +10 +09 +07 -06 -05 +02 -01 :: 5 cycles
summary

Reversal distance: 8

Component C1 (Reversal distance: 3)

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13.
. 03> <03 02> <03 <02 ...
e e e e :10 :07 :11 :08 :09
: +01 +02 +03 +04 +05 +06 -07 -09 -10 +08 +11 +12 :: 10 cycles

3-traces

{73{8.10} < {8.9} : [3]

Component C2 (Reversal distance: 5)

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13.

01> ... 01> <01 01> <01 <01

d11 ... 04 13 ... Lo el el e ... 112 :03 :01

: -04 -03 +12 -11 -10 -09 -08 -07 -06 -05 +02 -01 :: 8 cycles
5-traces

{1.2}{1.2.5.-.12}{2}{12} < {1.-.4} : [60]
{1.-.12}3{2}{3.4.12}{5.-.11} < {3.-.11} : [60]
{1.-.12}{2.-.12}3{2.5.-.12}{12} < {2.-.4} : [60]

{1.2} < {1.5.-.11} < {1.3.4.12} < {2.-.12}{3.-.11} : [2]
{2.-.12} < {1.3.4.12} < {1.5.-.11} < {1.2}{3.-.11} : [2]
{2.5.-.12}{5.-.11} < {1.12} < {1.5.-.11} < {1.-.4} : [5]

8-traces (obtained from the multiplication of the traces of C1 and C2)

{1.23{1.2.5.-.123{2}{7}{8.10}{12} < {1.-.4}{8.9} : [180]
{1.-.12}{2}{3.4.12}{5.-. 11}{7}{8.10} < {3.-.11}{8.9} : [180]
{1.-.12}{2.-.12}{2.5.-.12}{7}{8.10}{12} < {2.-.4}{8.9} : [180]
{1.23{7}3{8.10} < {1.5.-.11}{8.9} < {1.3.4.12} < {2.-.12}{3.-.11} : [6]
{2.-.123{73{8.10} < {1.3.4.12}{8.9} < {1.5.-.11} < {1.2}{3.-.11} : [6]
{2.5.-.123{5.- . 11{7}{8.10} < {1.12}{8.9} < {1.5.-.11} < {1.-.4} : [15]

Total number of 8-traces: 6
Total number of solutions: 567

Figure 47: Analyze traces of the linear permutation (—4,-3,12,—11,-8,10,9,7,—6,—5,2,—1) by mul-
tiplying the traces of its components C1 and C2. To obtain the real number of sequences in each trace
and the total number of solutions, we must multiply the given number of sequences in each trace and the
given number of solutions by M (3,5) = 56.

119

Appendix A. BAOBABLUNA interface

>java -classpath baobab-luna.jar baobab.exec.trace.analyzeTraces -p -1
-o -5,-2,-7,4,-8,3,6,-1

1. 2. 3. 4. 5. 6. 7. 8. 9.

1> <1 1> <1 1> 1> <1 1> <1

:7 :5 :6 :8 :9 :2 :4 :3 :1

: -5 -2 -7 +4 -8 43 46 -1 :: 1 cycles
summary
Reversal distance: 8

8-traces

{1.-.8}+{2}{2.-.5.7.83{2.4.7} < {2.3.7.8}{2.8} < {2.-.6}{7.8} : [1288]
{1.-.8}{2}{2.-.5.7.8}{2.4.7}{3.8} < {2.4.-.7}{4.-.6} < {3.-.7} : [2072]

%i:—.S}{2.4 7.8F < {2.-.4.6.7> < {2.3.5.-.8} < {2.-.6.8} < {4.5.7.8} < {4.6.7} < {56.-.7} : [8]
{1.-.8}{3.4.6.8} < {2.6.7} < {2.-.4.8} < {4.6.7} < {3.6.-.8F < {3.-.5.8} < {3.-.7} : [8]

Total number of 8-traces: 92
Total number of solutions: 51304

Figure 48: Analyze perfect traces of the linear permutation (—5,—2,—7,4,—8,3,6,—1).

>java -classpath baobab-luna.jar baobab.exec.trace.analyzeTraces -p 0
-o -5,-2,-7,4,-8,3,6,-1

1. 2. 3. 4. 5. 6. 7. 8. 9.
1> <1 1> <1 1> 1> <1 1> <1
:7 :5 :6 :8 :9 :2 :4 :3 :1
t: -6 -2 -7 +4 -8 43 +6 -1 :: 1 cycles

summary
Reversal distance: 8
8-traces

{2.4.-.7}{3.8}{2.4.7}{4.-.6}{3.-.7} (representative)

{1.-.8}{2}{2.-.5.7.8}
7.83{2.4.73{3.8} < {2.4.-.7}{4.-.6} < {3.-.7} (normal form)

{1.-.8}{2}2.-.5.7.
[112] (size)

{1.-.8}{2}{2.-.5.7.8}{3.8}{4}{3.4.73{2.-.4}{2.- .6} (representative)
{1.-.8}{2}{2.-.5.7.8}3{3.8}{4} < {3.4.7} < {2.-.4}{2.-.6} (normal form)
[1344] (size)

{1.-.8}{2.-.5.7.8}{2.4.-.7}{2.3.5.-.8}{2.-.6.8}{3.4.7.8}{3.-.7}{5.-.7} (representative)
{1.-.8}{2.-.5.7.8F < {2.4.-.7} < {2.3.5.-.8} < {2.-.6.8} < {3.4.7.8} < {3.-.7}{5.-.7} (normal form)
[16] (size)

Total number of 8-subtraces: 12
Total number of solutions: 11568

Figure 49: Analyze progressive perfect subtraces of (—5,—2,—7,4,—8,3,6,—1), which is a linear permu-
tation.

120

A.3. Running executable programs

>java -classpath baobab-luna.jar baobab.exec.trace.analyzeTraces -1 F -h "3[0]|0.7"
-o -4,-3,12,-11,-8,10,9,7,-6,-5,2,-1 -w 39,42,44,125,14,30,32,391,18,47,100,176

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12.
. 01> <01 <01 02> <02 02> <02 <02 02> <02 01>
. :03 :12 :02 :11 :09 :05 :06 :07 :08 :10 :04
: +01 +03 -02 -11 +05 -09 -10 +08 +06 -07 -04 +12 :: 3 cycles
summary
Reversal distance: 9

9-traces

{2.3}{3}{4.-.11}{5.
{2.3}{3}{4.-.11}{5.
[60480] (size)

.10}{6}{6.-.8.10}{6.8}{6.-.9}{7.8} (representative)
.10}{6}{6.-.8.10}{6.8} < {6.-.9}{7.8} (normal form)

{2.3}{3}{4.-.11}{6.8.-.103{8.10}{5.-.10}{6}{7.-.10}{8.9} (representative)
{2.3}{3}{4.-.11}{5.-.10}{6}{6.8.-.10}{8.10} < {7.-.10}{8.9} (normal form)
[50904] (size)

{2.3}{3}{8.10}{5.8.-.10}{5.6.8.9}{5.7.-.9}{4.-.11}{6}{6.-.9} (representative)
{2.3}{3}{4.-.11}{5.8.-.10}{6}{8.10} < {5.6.8.9} < {5.7.-.9} < {6.-.9} (normal form)
[1008] (size)

{2.3}{3}{6.8.-.10}{5.6.8.10}{5.6.8.9}{5.-.8}{4.-.11}{6}{7.8} (representative)
{2.3}{3}{4.-.11}{6}{6.8.-.10} < {5.6.8.10} < {5.6.8.9} < {5.-.8}{7.8} (normal form)
[1512] (size)

Total number of 9-subtraces: 4
Total number of solutions: 113904

Figure 50: Apply the terminus-symmetry constraint for searching (p,q,r)—induced subtraces with
p = 3 (mazimum number of external reversals), ¢ = 0 (mazimum number of terminus-asymmetric
reversals) and r = 0.7 (threshold to the terminus-symmetry rate) of the circular permutation
(1,3,—2,-11,5,—-9,-10, 8,6, —7, —4, 12) with the respective marker lengths 39, 42, 44, 125, 14, 30, 32,
391, 18, 47, 100, and 176.

121

Appendix A. BAOBABLUNA interface

>java -classpath baobab-luna.jar baobab.exec.trace.analyzeTraces
-s 3,11,13 -o -4,-3,12,-11,-8,10,9,7,-6,-5,2,-1

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13.

01> ... 01> <01 03> <02 <03 <02 02> ... 01> <01 <01

:11 ... :04 :13 :07 :09 :05 :06 :08 ... :12 :03 :01
:: -04 -03 +12 -11 -08 +10 +09 +07 -06 -05 +02 -01 :: 5 cycles
summary

Reversal distance: 8

Strata end points:

> 3 (between -3 and 12)
> 11 (between -5 and 2)
> 13 (after -1)

8-traces

{1.2}{2}{1.2.5.-.12}{7}{8.10}{12}{8.9}{1.- .4} (representative)
{1.23{1.2.5.-.123{2}{7}{8.10}{12} < {1.-.4}{8.9} (normal form)
[420] (size)

Total number of 8-subtraces: 1
Total number of solutions: 420

Figure 51: Analyze strata-induced subtraces with strata end points in (03.), (11.) and (13.), for the linear
permutation (—4,-3,12,-11,-8,10,9,7,—6,—5,2, —1).

>java -classpath baobab-luna.jar baobab.exec.trace.analyzeTraces -1 F -h "3]0[0.7" -p 2
-o -4,-3,12,-11,-8,10,9,7,-6,-5,2,-1 -w 39,42,44,125,14,30,32,391,18,47,100,176

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12.
. 01> <01 <01 02> <02 02> <02 <02 02> <02 01>
:03 :12 :02 :11 :09 :05 :06 :07 :08 :10 :04
:: +01 +03 -02 -11 +05 -09 -10 +08 +06 -07 -04 +12 :: 3 cycles
summary
Reversal distance: 9

9-traces

{2.3}{3}{4.-.11}{5.
{2.3}{3}{4.-.11}{5.
[28224] (size)

.10}3{6}{6.-.8.10}{6.8}{6.-.9}{7.8} (representative)
.10}{6}{6.-.8.10}{6.8} < {6.-.9}{7.8} (normal form)

{2.3}{3}{4.-.11}{6.8.-.10}{8.10}{5.-.10}{6}{7.-.10}{8.9} (representative)
{2.3}{3}{4.-.11}{5.-.10}{6}{6.8.-.10}{8.10} < {7.-.10}{8.9} (normal form)
[25200] (size)

{2.3}{3}{6.8.-.10}{5.6.8.10}{5.6.8.93{5.-.8}{4.-.11}{6}{7.8} (representative)
{2.3}{3}{4.-.11}{6}{6.8.-.10} < {5.6.8.10} < {5.6.8.9} < {5.-.8}{7.8} (normal form)
[1512] (size)

Total number of 9-subtraces: 3
Total number of solutions: 54936

Figure 52: Apply the progressive detection of common intervals, accepting at most two interval breaks,
together with the terminus-symmetry constraint with at most 8 external and no terminus-asymmetric
reversals for a threshold of 0.7 to the terminus-symmetry rate, for searching subtraces of the circular
permutation (1,3,—2,—11,5,—-9,-10,8,6, —7, —4, 12) with the respective marker lengths 89, 42, 44, 125,
14, 30, 32, 891, 18, 47, 100, and 176.

122

A.3. Running executable programs

>java -classpath baobab-luna.jar baobab.exec.trace.analyzeTraces
-s 3,11,13 -0 -4,-3,12,-11,-8,10,9,7,-6,-5,2,-1 -p O

ABORTED: It is not possible to consider strata together with progressive detection of common intervals.

Figure 53: Strata (parameter -s) and progressive detection of common intervals (parameter -p) are
incompatible constraints when analyzing traces of a linear permutation. The program is aborted.

123

Appendix A. BAOBABLUNA interface

124

Appendix B

Dealing with duplications

Summary
B.1 Repetition-free longest common subsequence 126
B.2 Hardness analysis v vt i vt ittt it v oo e e e e 126
B.2.1 MAX 2,3-SAT o e e e e e e 126
B.2.2 L—reducing MAX 2,3-SATtO RFLCS . . . « v v v vttt e e e e e e 127
B.3 Experiments. i i i e e e e e e e e e e e e e e e 130
B4 Finalremarks . . ¢ v v v v vt v it i i e e e e e e e e e 130

In this work we mostly talked about sorting by reversals without duplications. Although this
model is valid and can be applied to the analysis of real cases, it has an important limitation.
In practice, we often can not determine a one-to-one relation between the genes of the analyzed
genomes. A genome can contain more than one copy of a gene and it may be difficult to decide
which copy in one genome corresponds to a copy in the other [56]. All copies or duplications of
a same gene can also be called a family of genes.

In the genome rearrangement domain, gene duplication is rarely considered as it usually
makes the problem at hand harder. Sankoff [57] proposed the so called ezemplar model, which
consists in searching, for each family of duplicated genes, an exemplar representative in each
genome. In biological terms, the exemplar gene may correspond to the original copy of the
gene, which later originated all other copies. Following the parsimony principle, the choices of
exemplars should be made so as to minimize the breakpoint (that is, the number of breakpoints)
and/or the reversal distance between the two simpler versions of both genomes, composed only
by the exemplar genes. An alternative to the exemplar model is the multigene family model,
which consists in maximizing the number of paired genes among a family. Here the gene pairs
should be chosen so as to minimize the breakpoint distance between the genomes. Both exemplar
and multigene models were proven to lead to NP-hard problems [14, 20].

A study by Adi et al. [1] propose a similarity measure between two genomes, based on
the length of a special kind of longest common subsequence [12, 24], that the authors called
repetition-free longest common subsequence (RFLCS). We participated in the hardness analysis
of computing this measure, as we will describe in this chapter.

125

Appendix B. Dealing with duplications

B.1 REPETITION-FREE LONGEST COMMON SUBSEQUENCE

To compare two genomes represented as sequences of symbols, Adi et al. [1] propose a similarity
measure that takes into account the concept of exemplar genes. The measure is based on the
length of a repetition-free longest common subsequence (LCS) between the two sequences. Only
deletions of symbols from the original sequences are allowed to compute this special kind of LCS,
and, furthermore, for each family with k& duplicated genes in one sequence, at least kK — 1 of them
must be deleted. The concept behind the exemplar model is captured by the repetition-free
requirement in the sense that at most one representative of each family of duplicated genes in
each sequence is taken into account. The length of a repetition-free LCS is a measure of the
similarity between the sequences, so it can be used to compute a distance between two sequences
(or genomes).

An alphabet is a finite set and we refer to each of its elements as a symbol. In the context
of genome rearrangements, each symbol represents a gene, thus if one symbol occurs more than
once in a sequence, this means that the corresponding gene is duplicated on the genome. All
considered sequences are finite and over some alphabet usually implicit, as it may be considered
to be the set of all symbols appearing in the involved sequences. For a sequence w, we use |w|
to denote the length of w. The problem we are interested in, denoted by RFLCS, consists of
the following: given two sequences = and y, find a repetition-free LCS of « and y. We write
RFLCS(z,y) when we refer to RFLCS for a generic instance consisting of a pair (z,y). We denote
by opt(RFLCS(z,y)) the length of an optimal solution of RFLCS(z,y).

Bonizzoni et al. [15] considered some variants of the RFLCS. For instance, they considered
the case where some symbols are required to appear in the sought LCS, and possibly more than
once. They showed that these variants are APX-hard and that, in some cases, it is NP-complete
just to decide whether an instance of the variants is feasible. This second complexity result
makes these variants less tractable.

Adi et al. [1] presented some algorithmic results for the RFLCS. First, they showed some
polynomial cases of RFLCS. If one of the considered sequences (or genomes) is free of duplications,
for instance, the problem can be simply handled as LCS, which can be solved in polynomial
time for a fixed number of sequences [12, 24]. Then the authors presented three approximation
algorithms for RFLCS. They described some c-approximations for the case where each symbol
appears at most ¢ times in at least one of the sequences. They also proposed an integer linear
programming formulation (IP) for RFLCS.

We participated in the hardness analysis of RFLCS, proving that RFLCS is APX-hard even
when each symbol appears at most twice in both sequences.

B.2 HARDNESS ANALYSIS

We show that RFLCS(z,y) is APX-hard, by presenting an L-reduction [51] (a special kind of
reduction which preserves APX-hardness) from a particular version of MAX 2-SAT, which is
known to be APX-complete, to RFLCS.

B.2.1 MAX 2,3-SAT

Let V be a set of boolean variables. Denote by v the negation of a variable v and, generalizing
this notation for a given set V,let V = {v : v € V}. Recall a clause c over V is a set of literals,
where a literal is an element from V U V. We refer to a clause with k literals as a k-clause. An
assignment for V is a function a : V' — {true, false}. A literal ¢ is true according to a if, for

126

B.2. Hardness analysis

V = {v1,v2,v3}
C= {Cla C2,C3, ¢4, C5, Cg, C7, C8, 09}

cp ={v1,v2} ca={v1,v3} 7= {vo,v3}
co = {t1,v12} ¢5={v1,T3} cg={T2,u3}
cs =A{v1,73} ¢ ={v1,U3} ¢y = {2,735}

One optimal solution:
a(v1) = true, a(vy) = false, and a(v3) = true

Figure 54: An instance of MAX 2,3-SAT with one optimal solution. Observe that all the clauses in C' have
two literals and, moreover, each literal in V UV appears in at most three clauses in C.

some v in V, either / = v and a(v) = true, or £ =7 and a(v) = false. A clause c is satisfied by
an assignment a if at least one of its literals is true according to a.

For a set C' of 2-clauses over V, where each literal in V UV may appear in at most three
clauses in C, MAX 2,3-SAT(V, C') is the problem of finding an assignment for V' that maximizes
the number of satisfied clauses in C. This variant of MAX 2-SAT is APX-complete [3, 51].
We assume that, for any v in V, no clause is of the form {v,7}. For an assignment a, we
denote by val(MAX 2,3-sAT(V,(C'),a) the number of clauses in C' that are satisfied by a and
let opt(MAX 2,3-sAT(V,C)) = max{val(MAX 2,3-SAT(V,C'),a) : a be an assignment for V}.
Figure 54 shows an instance of MAX 2,3-SAT with one corresponding optimal solution.

B.2.2 [—reducing MAX 2,3-SAT to RFLCS

Recall that opt(RFLCS(x,y)) = max{|w| : w is a repetition-free subsequence of x and y}. An L-
reduction from MAX 2,3-SAT to RFLCS consists of a pair of polynomial-time computable functions
(f,g) such that, for two fixed positive constants « and (3, the following two conditions hold:

(C1) for every instance (V,C) of MAX 2,3-sAT, f(V,C) = (z,y) is an instance of RFLCS, and
opt(RFLCS(x,y)) < aopt(MAX 2,3-saT(V,C));

(C2) for every instance (V,C') of MAX 2,3-SAT, and every repetition-free subsequence w of z
and y, where (z,y) = f(V,C), we have that a = ¢g(V,C,w) is an assignment for V, and
opt(MAX 2,3-sAT(V,C)) — val(MAX 2,3-SAT(V,(C),a) < B (opt(RFLCS(z,y)) — |w]).

Theorem 2 Let x and y be two sequences over the same alphabet F. If, for each symbol f in F,
the number of occurrences of f in x ory is bounded by two, then RFLCS(x,y) is APX-complete.

Proof.

Adi et al. [1] proposed c-approximations for the case where each symbol appears at most ¢
times in at least one of the sequences. For the particular case where each symbol appears at
most 2 times in at least one of the sequences (when m,(z,y) < 2), we have 2-approximations for
RFLCS(x,y), so the case of RFLCS(z,y) addressed by this theorem is in APX. Next we show an
L-reduction from MAX 2,3-SAT to RFLCS.

For an instance (V, C') of MAX 2,3-SAT, where V' = {vy,vs,...,v,} is a set of boolean variables
and C' is a set of 2-clauses over V', we describe an instance (x,y) = f(V,C) of RFLCS. Let
{ci,¢a,...,cm} be a set of distinct labels, one for each of the clauses in C. We abuse notation

127

Appendix B. Dealing with duplications

V= {vla U23v3}
C= {Cla c2,C3, ¢4, C5, Cg, C7, C8, 69}

cp ={v1,v2} cg ={v1,v3} 7 = {vo,v3}

co = {U1,v2} 5 ={v1,T3} cg = {T2,v3}

cg = {v1,72} ¢ = {01,703} cg = {T2,V3}
s(v1) = creacs s(va) = creacr s(v3) = cacres
s(01) = caczeg s(Tz) = ezcgeg s(T3) = escqc9

D= {d17d27d37 d47d57d67d77d87d97d107d117d12}

s(v1) s(o1) s(v2) s(v2) s(vz) s(v3)
e Yt et N N
T = C1e405 Coc3cq didadzdydsds e cactCzcgeg drdgdgdipdyidia Cacreg Cscgey

Y = cac3C¢ c1¢4¢5 d1dadsdadsdg c3cgeg c1cacy drdgdgdipdindia cscgey cacres
S~ —_— S~ ——
s(W1) s(v1) s(g) s(v2) s(U3) s(v3)

Figure 55: L—reducing MAX 2,3-SAT(V, C) to RFLCS(z,y): an optimal solution for RFLCS(z, y) is given by
the subsequence cicycsdidadsdadsdscscscodrdsdodigdiidiacy, that corresponds to an optimal solution for
MAX 2,3-SAT(V, C), satisfying the clauses c1, cs, ca, ¢s5, c7, cs, and cg with the assignment a(vy) = true,
a(vy) = false, and a(v3) = true.

and use ¢; to refer both to the label ¢; and to the clause whose label is ¢;. So in particular we
denote also by C' the set of labels {c1,co,...,cm}.

For each literal ¢, we denote by s(¢) a sequence composed by the (labels of the) clauses in
which /¢ is present, taken in an arbitrary order. Thus, for each v in V and an assignment
for V, the sequence s(v) contains the clauses of C' that would be satisfied if a(v) = true and the
sequence s(7) contains the clauses of C' that would be satisfied if a(v) = false. Observe that,
since we do not have a clause of the form {v,v}, then s(v) and s(v) have no common symbol. In
addition, as each literal ¢ may appear in at most three clauses of C', we have that |s(¢)| < 3.

We also use a new set of symbols D = {dy,da,...,dy}, such that k =6(n—1) and DNC = 0,
and take the sequences = and y to be as follows (an example of this construction is available in
Figure 55):

x = s(v1)s(01)dydodzdadsdgs(va)s(Tz)drdgdgdiodiidys - - - dj—5dp—sdp—3dg—odi_1ds(vy)s(Ty)
and

y = 5(01)s(v1)d1dadsdadsdss(T2)s(ve)drdgdodiodiidia - - - dp—sdi—adi—3di_odr_1dis(Tr)s(vp)-

The alphabet adopted is the set C'U D. By definition, the sets C' and D are disjoint and each
symbol of D occurs once in both x and . In addition, as each clause ¢ in C has two literals, and,
for each £ in V UV, the correspondent sequence s(¢) appears once in either « or g, the number
of occurrences of each symbol ¢ in x is equal to two, and the same is valid for y.

Note that the described (z,y) = f(V,C) can be computed in polynomial time. Since all
clauses have two literals, then n < 2m, where n = |V| and m = |C|. Also, each symbol of the
adopted alphabet may appear at most once in a repetition-free subsequence of x and y, thus
opt(RFLCS(z,y)) < m+6(n—1) < 12m. On the other hand, we can easily set an assignment a for
V', such that val(MAX 2,3-SAT(V, (), a) > m/2: sequentially, for i = 1,2,...,n, define C; C C
as C; = {c € C : ¢ contains either v; or 7;} and C' = C'\ C;; then make a(v;) = true if v; is more
common than 7; in the clauses of C;, otherwise a(v) = false. Note that the final C'is empty and a
satisfies at least |C;|/2 clauses from Cj, for each i. Therefore, as UC; is equal to the initial C', the
assignment a satisfies at least m /2 clauses from the initial C'. So opt(MAX 2,3-sAT(V,C)) > m/2.

128

B.2. Hardness analysis

Putting the two together, we conclude that opt(RFLCS(x,y)) < 24 opt(MAX 2,3-sAT(V, (), and
(C1) holds with o = 24.

The next claim is used to prove that (C2) also holds. In particular, its proof includes the
description of the function g.

Claim 1 Let (V,C) be an instance of MAX 2,3-SAT and (z,y) = f(V,C). There is a repetition-
free subsequence w of x and y of length at least p = q+|D| if and only if there is an assignment a
for V' that satisfies at least ¢ = p — |D| clauses of C.

Proof. Let w be a repetition-free subsequence of x and y of length p. First we describe another
repetition-free subsequence z of x and y of length at least p that contains all symbols in D.
From z, we describe an assignment a that satisfies at least |z| — |D| > p — |D| clauses of C.

The following procedure constructs z from w, so that z is a supersequence of dids - - - dk
and is at least as long as w. Sequentially, for ¢ = 1,2,...,n — 1, remove any symbol of w
that comes from the alignment of a symbol of s(v;)s(7;) in x (of s(7;)s(v;) in y) and a symbol
of s(Vix1)s(vit1)do(i+1)—5 -+ dks(n)s(vn) in y (of s(vis1)sWiz1)ds(it1)-5 " dks(vn)s(Vn) in z,
respectively), and then add dg;—5ds;—adg;—3dsi—2dei—1ds; (which are the symbols from D that are
between s(v;) and s(v;41) in x or y). Call z the resulting subsequence after all these substitutions.
At the end, add to z the symbols from D that are not already present in it. Observe that
|s(v;)s(t;)| < 6, thus at each step we replace at most six symbols by exactly six new symbols
from D (that do not occur in w). Hence z is also a repetition-free subsequence of = and y, with
2] > Juwl.

We now proceed to describe the assignment a. Since z contains all symbols from D, the
other portions of z are subsequences of s(v;)s(v;) in x and s(7;)s(v;) in y, for each i = 1,2,... n.
Moreover, because all symbols in s(v;) differ from those in s(7;), the subsequence z does not align
simultaneously symbols from both s(v;) and s(7;). So we define an assignment a as a(v;) = true
if z aligns a symbol from s(v;), otherwise a(v;) = false. Set g(V,C,w) = a. Observe that
assignment «a satisfies at least ¢ = |z| — |D| > p — | D| clauses.

For the other direction, consider an assignment a for V that satisfies ¢ clauses of C'. Let w
be a repetition-free subsequence of and y obtained as follows. For i = 1,2,...,n, add to w the
symbols that correspond to the clauses in s(v;) if a(v;) = true, otherwise add the symbols that
correspond to the clauses in s(7;). After all the additions, eliminate repetitions and add to w, at
the corresponding positions, all symbols from D. Then w is a repetition-free subsequence of =
and y such that |w| = ¢+ |D]. O

We now go back to the proof of Theorem 2. First note that the assignment a = g(V, C,w)
described in the proof of Lemma 1 can be obtained in polynomial time. So g is a polynomially
computable function.

Due to Lemma 1, for each optimal solution for RFLCS(z,y) there is a corresponding solution
for MAX 2,3-sAT(V,C) that satisfies at least opt(RFLCS(z,y)) — |D| clauses from C. Analo-
gously, an optimal solution for MAX 2,3-sAT(V,C') corresponds to a solution for RFLCS(x,y)
of length at least opt(MAX 2,3-SAT(V,()) + |D|. Thus, we have that opt(RFLCS(z,y)) =
opt(MAX 2,3-saT(V,C)) + |D].

Also according to Lemma 1, there is a repetition-free subsequence w of = and y of length p
if and only if there is an assignment a for V that satisfies at least p — |D| clauses of C.
Let g(V,C,w) = a and note that a can be obtained in polynomial time from V, C, and w.
Also, we have that val(MAX 2,3-saT(V,C'),a) > |w| — |D|. So, opt(MAX 2,3-sAT(V,C)) —

129

Appendix B. Dealing with duplications

val(MAX 2,3-sAT(V,C,a)) < opt(RFLCS(z,y)) — |D| — (Jw| — |D]) = opt(RFLCS(z,y)) — |w],
and (C2) holds with g = 1. O

B.3 EXPERIMENTS

Adi et al. [1] described three c-approximations for the case where each symbol appears at most
¢ times in at least one of the sequences. The authors presented also an integer linear program-
ming formulation (IP) for RFLCS and showed some computational results obtained for RFLCS,
considering the three approximation algorithms and the use of the proposed formulation to the
IP solver for finding optimal solutions of the tested instances.

The experimental results obtained by Adi et al. [1] indicate that the performance of the
approximation algorithms is quite satisfactory for the instance sizes tested, that have length at
most 512. However, the authors consider that it would be nice to test the performance on larger
instances. The limitation is that for larger instances, especially when the sequences have many
repetitions (small alphabet), the solution of the approximation algorithms can be computed very
fast, but often the optimal value can not be computed. The authors are working on the branch
and cut algorithm to solve larger instances, and expect to be able to find out whether there is a
constant approximation algorithm for RFLCS.

B.4 FINAL REMARKS

We participated in a study by Adi et al. [1], that proposes a similarity measure between two
genomes with gene duplications, based on the length of a special kind of longest common sub-
sequence [12, 24]. The authors called this measure repetition-free longest common subsequence
(RFLCS).

Adi et al. [1] presented some algorithmic results for the RFLCS. In particular, they showed
some polynomial cases and three approximation algorithms for RFLCS. They described some
c-approximations for the case where each symbol appears at most ¢ times in at least one of the
sequences. They also proposed an integer linear programming formulation (IP) for RFLCS. We
participated in the hardness analysis of RFLCS, proving that RFLCS is APX-hard even when each
symbol appears at most twice in both sequences.

Adi et al. [1] showed some computational results obtained for RFLCS, considering the three
approximation algorithms and the use of the proposed formulation to the IP solver for finding
optimal solutions of the tested instances. The experimental results indicate that the performance
of the approximation algorithms is quite satisfactory for the instance sizes tested (that have length
at most 512).

For the complete study of Adi et al. [1], including computational results and proofs, see
http://www.ime.usp.br/ cris/publ/rflcs.pdf.

130

Appendix C

Extended abstract in French

Summary
Cd Introduction 0 o i i i it it e e e e e e e e e 131
C.2 Permutations, intervalles et inversions 132
C.3 Le tri par inversions et son espace de solutions. 133
CBLTraces . . v v v v vt e e e e e e e e e 133
C.3.2 Un algorithme pour énumeérer directement les traces 135
C.4 Contraintes biologiques ¢ v v vt it i it i e e 136
C.5 Applications 0 o i i i it e e e e e e e e e e e 139
C.5.1 Analyse des chromosomes sexuels humains X et Y 139
C.5.2 Analyse des bactéries Rickettsia 140
C.6 BAOBABLUNA . . . o i i it it it i it it et e e et e e e e e 140
C.7 Conclusions et limitations, 140
C.8 Perspectives v v i i i i it e e e e e e e e e e e e e e e e 141

C.1 INTRODUCTION

Notre travail concerne I’algorithmique des réarrangements de génomes. On se concentre princi-
palement sur le probléme de comparer deux génomes avec ’objectif de déterminer des séquences
d’inversions pour transformer un génome dans un autre.

Les génomes subissent des constantes mutations au cours de 1’évolution. Ces mutations peu-
vent étre de petite échelle, comme les polymorphismes d’un seule nucléotide ou single nucleotide
polymorphisms (SNPs), ou de large échelle, comme les inversions, insertions, délétions, transpo-
sitions, fusions et fissions de chromosomes. Les inversions sont des événements de large échelle
observés trés fréquemment, spécialement dans ’évolution des prokaryotes [13]. Chez les eukary-
otes, les inversions ont aussi été observées et actuellement il existe des théories qui attribuent aux
inversions un role majeur dans I’évolution des chromosomes sexuels X et Y chez les mammiféres
et aussi chez des autres organismes [40, 55, 60].

Parmi les problémes les plus étudiés dans l’approche algorithmique de la comparaison de deux
génomes différents sont celui de calculer la distance de réarrangement, c’est-a-dire, le nombre
minimum d’événements nécessaires pour transformer un génome dans un autre, et celui de déter-
miner une séquence optimale d’événements qui transforme un génome dans un autre. Quand les

131

Appendix C. Extended abstract in French

événements sont restreints aux inversions et les duplications de génes ne sont pas acceptées, il
existe des algorithmes polynomiaux pour résoudre ces deux problémes [32, 33|, qui sont alors
nommeés la distance d’inversions et le tri par inversions. Néanmoins, le nombre de séquences op-
timales différentes est trés grand, et il faut alors considérer d’autres critéres pour pouvoir réaliser
une analyse plus précise.

Une stratégie possible est celle de chercher les séquences qui respectent certaines contraintes
biologiques, comme par exemple les intervalles communs, qui sont les ensembles de génes co-
localisés dans les génomes analysés - une séquence d’inversions qui ne sépare pas les intervalles
communs doit étre plus réaliste qu’'une séquence qui sépare. Une autre approche est celle de
générer 'univers de toutes les séquences optimales, grace & un algorithme proposé par Siepel [59].
Comme cet ensemble peut étre trop grand pour étre interpreté, un modéle pour regrouper des
sous-ensembles de séquences optimales dans des classes d’équivalence a été proposé par Bergeron
et al. [9], ce qui permet de réduire la taille de ’ensemble & traiter. Mais le probléme de trouver les
classes sans énumérer toutes les solutions optimales restait ouvert, alors un de nos résultats les
plus importants est ’algorithme qui donne une réponse a ce probléme, c’est-a-dire, un algorithme
qui génere une séquence optimale par classe d’équivalence et qui donne aussi le nombre de
séquences par classe, sans énumeérer toutes les séquences [18]. Mais, bien que le nombre de
classes soit beaucoup plus petit que le nombre de séquences, il peut étre encore trop grand.

On propose alors l'utilisation de différentes contraintes biologiques, comme les intervalles
communs (détectés initialement et progressivement), pour réduire le nombre de classes, et on
montre comment utiliser ces méthodes pour analyser des cas réels d’évolution. En particulier,
on analyse le scénario évolutif de la bactérie Rickettsia et des chromosomes sexuels X et Y chez
I’étre humain. Par rapport aux résultats des études précédentes, qui se sont basées sur une seule
séquence optimale, on obtient une meilleure caractérisation de ces scénarios évolutifs.

Tous les algorithmes développés sont implémentés en java, integrés & BAOBABLUNA [16], un
logiciel qui contient des outils pour manipuler des génomes et des inversions. Le téléchargement
et le tutoriel de BAOBABLUNA sont disponibles en ligne.

C.2 PERMUTATIONS, INTERVALLES ET INVERSIONS

Les génomes étudiés sont représentés par la liste de marqueurs homologues (généralement des
génes ou des blocs des génes contigus) qu’ils partagent. Ces marqueurs homologues sont représen-
tés par les nombres entiers 1,2,...,n, avec un signe de plus ou de moins pour indiquer sur quel
brin de I’ADN ils sont. L’ordre et l'orientation des marqueurs dans un génome est représenté
par une permutation signée m = (71, ma, ..., Tp—1,7y) de taille n sur {—-n,...,—1,1,...,n}, de
fagon que, pour chaque valeur ¢ de 1 a n, ou bien 7 ou bien —i soit obligatoirement représenté,
mais pas les deux. La permutation identité (1,2,3,...,n) est dénoté par Z,.

Un sous-ensemble d’entiers positifs p C {1,...,n} est dit d’étre un intervalle d’'une permuta-
tion 7 si il existe 4,5 € {1,...,n}, 1 <i < j <n, de facon que p = {|m|, [mip1l, ..., |Tj—1], |75}
Etant donnée une permutation 7 et un intervalle p de 7, on peut appliquer une inversion sur
I'intervalle p en 7, c’est-a-dire, 'operation qui inverse I’ordre et les signes des éléments de p. Cette

operation est dénotée par mo p. Sim = (71,2, ..., W1, Wi, Tig1s- oy Tjm1, Tj, Tjtls- -« s Tn—1, T
and p = {|m;|, [miy1l, ..., |71l 5]}
Top= (71'1,7'('2, ey TG—1, =Ty =TTy v ooy TG40y — T4 41y 0 v« 77Tn_177Tn>.

Par exemple, si on considére la permutation m = (—3,2,1,—4) et U'intervalle p = {1,2,4}, on
amop=(—3,4,—1,—2). Pour cette raison, un intervalle p peut aussi étre utilisé pour dénoter

132

C.3. Le tri par inversions et son espace de solutions

une inversion.

Une séquence d’inversions p1ps . .. pg est valide pour une permutation 7 si p; est un intervalle
de 7, po est un intervalle de 7 o p1, p3 est un intervalle de (7 o p1) o po, et ainsi de suite. Si
p1p2 - .- pq est une séquence valide d’inversions pour une permutation 7, alors m o pipa...py
dénote ’application consécutive des inversions pi, p2, -..pq dans 'ordre qu’elles apparaissent.
On dit qu’une séquence d’inversions p; ... pq trie une permutation 7 dans une permutation 7r si
mop1...pq = mr. Lalongueur des plus courtes séquences d’inversions qui trient une permutation
7 dans 77 est appelée la distance d’inversions de 7 et mp, dénotée par d(m, mr). De plus, les plus
courtes séquences d’inversions qui trient 7w dans 7 sont appelées des séquences optimales. Par
exemple, si la permutation m est (—3,2,1,—4) et la permutation 7y = Z4, on a d(m, mp) = 4 et
une séquence optimale est {1,2,4}{1,3,4}{2,3,4}{3}.

Dans le contexte de notre travail, sans perte de généralité, souvent on omet la permutation
finale 7. Dans ce cas, mp correspond a la permutation identité Z,, = (1,2,3,...,n), ou n est la
taille de la permutation initiale 7, et la notation d(m) est équivalente a d(m,Z,,).

C.3 LE TRI PAR INVERSIONS ET SON ESPACE DE SOLUTIONS

Comme on a mentionné avant, étant donnée une permutation 7, le probléme de calculer d()
et celui de trouver une séquence optimale d’inversions pour trier m peuvent étre solutionnés en
temps polynomiel. L’approche classique pour analyser ces deux problémes a été développée par
Hannenhalli and Pevzner [8, 32, 33, 53| et s’est basée sur une structure appelée le graph de points
de cassure (pour plus de détails, consulter [53]). Plusieurs études postérieures proposent d’autres
algorithmes qui donnent aussi une séquence optimale pour trier un génome par inversions [4, 11,
26, 31, 63|, mais le nombre de séquences optimales peut étre trés grand. Par exemple, pour
la permutation (—12,11,-10,6,13,—5,2,7,8,—9,3,4,1), le nombre de solutions différentes est
8278540, alors connaitre une seule séquence de cet univers est insuffisant pour étudier le scénario
évolutif des génomes correspondants.

Pour pouvoir réaliser une analyse plus précise, il faut considérer d’autres critéres. Une
stratégie possible est celle de chercher les séquences qui respectent certaines contraintes bi-
ologiques, comme par exemple les intervalles communs, qui sont les ensembles de génes co-
localisés dans les génomes analysés - une séquence d’inversions qui ne sépare pas les intervalles
communs doit étre plus réaliste qu’une séquence qui sépare [26]. Le probléme est qu’on ne peut
pas garantir qu’il existe une séquence qui respecte les contraintes choisies, alors on peut avoir un
résultat nul.

Une autre approche, proposée par Siepel [59], est une méthode qui permet la construction de
I’espace de toutes les solutions du probléme du tri par inversions, c’est-a-dire, I’énumération de
toutes les séquences optimales. Si on utilise cette méthode sur la permutation 7 = (—3,2,1, —4),
par exemple, on trouve 28 séquences optimales pour trier , listées dans le Tableau 25).

Méme si elle permet ’exploration de 1’espace de toutes les séquences optimales, 1'intérét de
cette approche est limité, parce que le nombre de séquences est en général tellement grand qu’on
ne peut pas les calculer. Dans le Tableau 26 on peut voir, par des différentes exemples, comment
I’augmentation de la distance d’inversion peut provoquer ’augmentation rapide du nombre de
séquences optimales.

C.3.1 Traces

Bergeron et al. |9] ont observé que plusieurs séquences sont équivalentes et peuvent étre re-
q p
groupées dans des classes d’équivalence. D’une maniére intuitive, toutes les séquences optimales

133

Appendix C. Extended abstract in French

o1. {1}{1,2,3}{2}{4} 11.
02. {1}{1,2,3}{4}{2} 12.
03. {1}{2}{1,2,3}{4} 13.

{1,2,3}{4}{1}{2} 21.
{1,2,3}{4}{2}{1} 22.
{2}{1}{1, 2, 3}{4} 23.

{43{1,2,3{1}{2}
{43{1,2,3}{2}{1}
{4H2H1H1, 2,3}

04. {(1}{2}{4}{1.2.3} 14. {2H{1}{4}{1,2.3} 24. {4}{2}{1,2.3}{1}

05. {1}{4}{1729 3}{2} 15. {2}{1529 3}{1}{4} 25. {17294}{1737 4}{273*, 4}{3}
06. {1}{4}{2}{17 27 3} 16. {2}{17 25 3}{4}{1} 26. {1> 25 4}{17 37 4}{3}{25 3; 4}
07. {1,2,3H{1}{2}{4} 17, {2}{4H{1}{1,2,3} 27. {1,2,4}{3H1,3,4}{2,3,4}
08. {1,2,3{1}{4}{2} 18. {2H{4}1,2,3}{1} 28. {3}{1,2,4}{1,3,4}{2,3,4}
09. {1,2,3{2}{1}{4} 19. {4H1}1,2,3}{2}

10. {1,2,3}{2H{4}H{1} 20. {4}{1}{2}{1, 2,3}

Table 25: Les 28 séquences d’inversion optimales qui trient la permutation (—3,2,1, —4).

Permutation () Ny d(m) Ng
Ta=(—3,21,-4) Z Z 28
75 =(—4,1,-3,6,—7, —5,2) 7 6 204
e = (—6,5,7,—1,—4,3,2) 7 6 496
7p = (—4,—3,12,—11,-8,10,9,7, —6, —5,2, —1) 12 8 31 752
g = (—4,3,12,-11,-8,10,9,7, —6, —5, 2, —1) 12 9 407 232
mp = (—12,11,-10,6,13,—-5,2,7,8,—-9,3,4,1) 13 10 8 278 540
re = (—12,11,-10, —1,16, —4, —3, 15, —14,9, -8, —7, —2, —13,5, —6) 16 12 505 634 256
g = (—12,11,-10,6,—5,13,2,7,8, -9, 14, —15,3,4, —16, 1) 16 13 40 313 272 766

Table 26: Exemples de permutations, leurs tailles, leurs distances d’inversion et leurs nombre de séquences
optimales.

dans la méme classe sont composées par les mémes inversions, mais apliquées dans un ordre
différent. Le 28 séquences optimales qui trient la permutation w4 = (—3, 2,1, —4), par exemple,
peuvent étre regroupées dans deux classes d’équivalence, une avec 24 et ’autre avec 4 séquences
(Tableau 27).

Classe 1:

01. {1}{1,2,3}{2}{4} 09. {1,2,3.{2}{1}{4} 17, {2H{4}{1}{1,2,3}
02. {1}{1.2,3}{4}{2} 10. {1,2,3}{2}{4}{1} 18. {2H4H1,2,3{1}
04. {1}{2}{4}{1,2,3} 12, {1,2,31{4}{2}{1} 20. {4}{1}{2}{1,2,3}
05. {1}{4}{1,2,3}{2} 13. {2}{1H1,2,3}{4} 21, {4}{1,2,3{1}{2}
07. {L23H{1H2H4} 15. {2H{L23}{1H4} 28. {4H2}{1}1.2,3}
08. {L23}{1H4}{2} 16. {2}{L23}{4}{1} 24. {4}{2}{1,2,3}{1}
Classe 2:

01. {1a2a4}{153a4}{2v374}{3} 03. {1v2a4}{3}{133a4}{2>3a4}

02. {17274}{1737 4}{3}{273* 4} 04. {3}{1*,294}{17374}{29 374}

Table 27: Les deux classes d’équivalence qui contiennent les séquences optimales pour trier my =
(—3,2,1,—4).

Pour formaliser la relation d’équivalence des ces classes, on a besoin d’introduire le concept de
commutation. On dit que deux intervalles (ou inversions) se chevauchent si ils (elles) s’intersectent
mais aucun(e) ne contient 'autre. Par exemple, dans la permutation (—3,2,1,—4), les inter-
valles {2,3} et {1,2,4} se chevauchent, mais {2,3} et {1, 2,3} ne se chevauchent pas. Soient s =
PLP2 - - - Pim1PiPi+1Pi+2 - - - P4 une séquence valide d’inversions pour une permutation m, et p; et
pi+1 deux inversions qui ne se chevauchent pas et qui apparaissent consécutivement en s. Comme
pi €t p;+1 ne se chevauchent pas, alors p;11 est un intervalle de mo p1pa ... p;—1 et p; est un inter-
valle de 7 0 p1pa ... pi—1pit1, Cest-a-dire, la séquence s’ = p1ps ... pi—1Pit1PiPit2 - - - Pd, Obtenue

134

C.3. Le tri par inversions et son espace de solutions

par le remplacement de p;p;41 par p;+1p; dans s, est aussi une séquence valide d’inversions pour
. Cette operation d’inverser, dans une séquence, les positions de deux inversions consécutives
p; and p;4+1 qui ne se chevauchent pas est appelée commutation de p; et pit1.

Deux séquences sont dites d’étre équivalentes si une peut étre obtenue de l'autre par une
séquence de commutations d’inversions qui ne se chevauchent pas. Une classe de séquences
optimales équivalentes sous cette relation est appelée une trace. Il est facile de voir que toutes
les séquences dans la méme trace ont le méme nombre d’inversions. Soit s = pips...p; une
séquence d’inversions, on dit que s est une i—séquence optimale pour une permutation 7 si
d(m o s,mr) = d(m,mr) —i. On dénote alors par i—trace une trace de i—séquences.

Bergeron et al. [9] ont montré que I’ensemble de toutes les séquences optimales est une union
de traces. Comme le nombre de traces est beaucoup plus petit que le nombre de séquences,
représenter les séquences par les traces est une approche plus puissante qui I’énumération de
toutes les séquences.

Forme normale d’une trace

Une séquence s dans une trace T est dite d’étre dans la forme normale si elle peut étre
décomposée dans des sous-chaines 17 s = u; < --- < u,, '8 de facon que:

e chaque deux inversions d’une sous-chaine u; ne se chevauchent pas;

e pour chaque inversion p d’une sous-chaine u; (i > 1), il y a au moins une inversion 6 de la
sous-chaine u; 1 de facon que p et 6 se chevauchent;

e chaque sous-chaine u; est triée dans 'ordre lexicographique ascendant.

Un théoréme de Cartier et Foata [23] (cité par [9]) énonce que, pour chaque trace, il y a un
seule élément qui est dans la forme normale. En conséquence, on représente une trace par son
élément dans la forme normale. Les deux traces qui contiennent les séquences optimales pour
trier la permutation w4 = (—3,2,1, —4), listées dans le Tableau 27, par exemple, peuvent étre
représentées par ses formes normales {1}{1,2,3}{2}{4} et {1,2,4}{3} < {1,3,4} < {2,3,4}.

C.3.2 Un algorithme pour énumérer directement les traces

Bergeron et al. [9] n’ont pas donnés des pistes algorithmiques pour 1’énumération directe des
traces, sans énumeérer toutes les séquences. De plus, I’énumération d’un élément de chaque trace
sans énumeérer toutes les séquences a été ennoncé comme un probléme ouvert. Un de nos résultats
les plus importants est une solution pour ce probléme, c’est-a-dire, un algorithme qui énumére
les formes normales de toutes les traces pour une permutation donnée, et qui compte le nombre
de séquences dans chaque trace, sans énumérer toutes les séquences.

L’idée de cet algorithme est derivée de la notion suivante. Une k-trace T” est un préfize d’'une
i-trace T (k < i) si, et seulement si, chaque k-séquence de T” est un préfixe d’au moins une
i-séquence de T'. De plus, le nombre de séquences dans une i—trace est la somme des nombres
de séquences dans ses (i — 1)—préfixes (Figure 56).

On propose alors un algorithme qui construit toutes les i-traces simultanément d’une fagon
incrémental, sans générer toutes les séquences. Sans cotit additionnel, I’algorithme calcule aussi le

"Les “sous-chaines” sont tous les sous-ensembles contigus d’une séquence.
'8Dans la notation original, la forme normale est s = w1]... |um, mais on prefére utiliser le symbol ‘<’ 4 la
place de |".

135

Appendix C. Extended abstract in French

{3}{1.2,4}{1.3,4}{2.3.4}
4-trace: {1,2,4}{3}{1,3,4}3{2,3,4}
{1,2,4}{1,3,4}{3}{2.3.4}
{1,2,4}{1,3,4}{2.3.4}{3}
size=3+1=4

/\

{3¥{1,2,4¥{1,3.4}

{1.2.4}{3}{1.3.4} {1,2,4}{1,3,4}{2,3.4}
3-traces: {1.2,4}{1,3,4}{3} size=1
size=2+1=3 /
fi {3¥{1.2,4}
PrETXES | 2-traces: (12,433} {1,2,4}{1,3,4}
size=1+1=2 size=1
1-traces: {3} (12,4}
size=1 size=1

Figure 56: La decomposition d’une 4-trace dans ses préfizes.

nombre de séquences dans chaque i-trace. Etant donnée une permutation , la méthode, illustrée
dans la Figure 57, est la suivante. Dans chaque iteration ¢, pour chaque (i—1)—trace T construite
dans l'iteration précédente on applique les inversions de la séquence de la forme normale de T sur
7, pour obtenir une permutation intermédiaire 7wp. On fait alors tourner I'algorithme de Siepel
sur 7 et chaque une des inversions résultantes p est ajoutée 4 la (i — 1)—trace T pour construir
une nouvelle i—trace T,, avec le méme nombre d’é¢léments de 7. §Si il existe déja une trace
T' équivalente a T}, construite précédemment, on additionne le nombre d’éléments de T, & T".
Sinon, on ajoute 7}, & I'ensemble de i—traces déja construites. La complexité de cet algorithme
est O(NnPFmaz+4) [18], ol kyar correspond a la largeur maximum d’une trace finale (la largeur
d’une trace est donné par la taille du plus grand sous-ensemble d’inversions de la trace, dans
lequel toutes les inversions commutent).

Implémentation et performance

L’implémentation de notre algorithme est intégrée au package BAOBABLUNA, qui est décrit
dans la Section C.6. On a tourné plusieurs tests différents sur des permutations artificielles
pour évaluer la performance de cet algorithme. Une partie des résultats est montrée dans le
Tableau 28. Ces nombres nous donnent une bonne idée de la quantité d’information qui est
manipulée, exprimée en nombre de séquences et de traces.

C.4 CONTRAINTES BIOLOGIQUES

Comme on a pu voir, bien que le nombre de classes soit beaucoup plus petit que le nombre
de séquences, il peut étre encore trop grand pour étre interprété. De plus, pour les distances

136

C.4. Contraintes biologiques

(Siepel) {13 2.3 2} {4} 3! {124}
(1-trace size) 1/ 1/ 1 1\ 1/ \1
1-traces: {1} {1,2,3} {2} {4} {3} {124}
size=1 size=1 size=1 size=1 size=1 size=1
N P e
(Siepel) {1.2,3f} Gy wr A {2 e A0 gesr ‘ \{z} \ / \
{ {1.2,4} {31 {134
(size sum) 1 1 \/ \
2traces: 113{1.2,3} {1¥{2} {14} {1.2,3}{2} {1.2,3}{4} {2}{4} {1,2,4}{3} {1.2,4}{1,3,4}
size=2 size=2 size=2 size=2 size=2 size=2 size=2 size=1
| N / N i \ - y - /! -~
{Siepe) (r {ep W23 ey Qs 3 4 SR & w aiy 154 o {2,3/.4}

(size sum)

3-traces: {1H1.2,3}{2} {L23}{2H4} {1.2,4}3}1.3.4} {1,2,4}{1,3,43{2,3.4}
S|

{1}{_1,2.36}{4} {13{23{4}

ize=§ size= size=§ size=§ size=3 size=1
s o
(Siepel) 14} 2} w23y 1 {2.3.41 1

(size sum) 3 1

{13{1,2,3}{2}{4}

{1,2,4}{3}{1,3,4}{2,3,4}

4-traces: h
size=24 size=4
Figure 57: La construction de toutes les traces pour la permutation (—3,2,1,—4).
PERMUT. N N Enum. Enum. Traces
sol. + traces
TF
n =12 8 278 540 2 151 ~ 13.5 min | ~ 30.1 min ~ 27 sec
d=10
G
n =16 505 634 256 | 21 902 ~ 16 h ~43.5 h ~ 7.25 min
a=12
Table 28: Résultats des expérimentations (1). Les colonnes de la gauche wvers la droite con-
tiennent: 1- la permutation, son nombre d’éléments et distance d’inversion; 2- le nombre de

séquences; 3- le nombre de traces; 4- le temps d’exécution de lalgorithm qui énumeére toutes les
séquences; 5- le temps d’exécution de l'algorithm qui calcule toutes les traces par l’énumeération de
toutes les séquences; 6- le temps d’exécution de l'algorithme qui énumere directement les traces.
Les deuz permutations analysées sont np = (—12,11,-10,6,13,-5,2,7,8,-9,3,4,1) et ¢ =
(—-12,11,-10,-1,16,—4,—3,15,—14,9, -8, -7, —2,—13,5, —6). Tous les algorithmes font partie du pack-
age BAOBABLUNA.

d’inversion de ~ 20 ou plus grandes, notre programme ne peut pas calculer les traces. Pour
réduire le nombre de traces & générer et aussi pour attribuer une signification biologique aux
traces, on a proposé I’énumération directe des traces qui respectent certaines contraintes.

A coté des deux permutations signées 7 et mp, ce méthode requiert aussi une liste de ¢
contraintes compatibles C' = (C1,Cq,...,Cy). On cherche les traces dont les séquences sont
en accord avec les contraintes données. Toutefois, fréquemment seulement un sous-ensemble des
séquences d’une trace sont en accord avec les contraintes en C' et ce sous-ensemble est appelé sous-

137

Appendix C. Extended abstract in French

trace C'—induite. La construction des traces reste inchangée, mais, en conséquence de la sélection
des inversions, en fait on construit directement les sous-traces C'—induites, dont les séquences
sont en accord avec toutes les contraintes en C. Le résultat d’appliquer cette méthode, pour une
liste C' de contraintes et une permutation données, est I’ensemble des sous-traces C-induites non
nulles, avec le nombre de séquences dans chaque sous-trace. Comme il n’y a pas de garantie de
I'existence d’une trace non nulle, on peut occasionnellement avoir un résultat nul.

On a analysé qualitativement comment les contraintes peuvent affecter la chronologie des
inversions et on a montré que certaines contraintes aménent & une approche symétrique (quand
les sous-traces dont les séquences trient m dans mp peuvent étre obtenues des sous-traces dont
les séquences trient 7 dans 7) et d’autres aménent & une approche asymeétrique. Pour chaque
séquence d’inversions s = p1p2 ... pg_1p4, on défine 'inverse de s comme inv(s) = pgpq_1 - - - p2p1-
De plus, étant donnée une trace T' (respectivement, sous-trace t), on défine U'inverse de T (re-
spectivement, Uinverse de ¢) comme inv(T) = { inv(s) | s € T } (respectivement, inv(t) =
{inv(s) | s €t }). Si s est une séquence d’inversions qui trie 7 dans 77, alors inv(s) est une
séquence qui trie 77 dans w. Une liste C' de contraintes est dite d’étre symétrique quand la
séquence s est en accord avec C' a la condition que inv(s) soit en accord avec C. Sinon, C est
dite d’étre asymétrique. Si C' est symétrique et ¢ est une sous-trace C'—induite pour trier 7 dans
77, alors inv(t) est une sous-trace C'—induite pour trier 7 dans 7.

On a considéré plusieurs contraintes biologiques différentes. Une de ces contraintes est la liste
d’intervalles communs, qui sont les ensembles de génes co-localisés dans les génomes analysés -
une séquence d’inversions qui ne sépare pas les intervalles communs doit étre plus réaliste qu’une
séquence qui sépare [26]. Les intervalles communs entre deux permutations 7 et 7y sont les
intervalles de 7 qui sont aussi intervalles de 7.

On a utilisé les intervalles communs dans deux approches différentes. La premiére cherche les
traces dont les séquences d’inversions ne cassent pas les intervalles communs détectés entre les
deux permutations initialles, ce qu’on appele intervalles communs initialement détectés (les inter-
valles communs initialement détectés sont ’'objet de plusieurs études sur le tri par inversions [6,
7, 10, 26]). Dans notre étude on a montré que cette approche est symétrique.

La deuxiéme approche, qui a été proposé par la premiére fois dans notre travail, cherche
les sous-traces dont les séquences d’inversions ne cassent pas les intervalles communs détectés
entre toutes les permutations intermédiaires, obtenues apreés ’application de 0 & d — 1 inversions,
et la permutation finale [17]. Cette approche est appellée détection progressive des intervalles
communs et est asymétrique.

D’autres contraintes ont été definies pour étudier les problémes pratiques auxquels on s’est
intéressé. En particulier, on a pu caractériser les inversions par rapport au terminus de la
réplication des chromosomes circulaires (cette méthode a été utilisée dans I’analyse de 1’évolution
de la bactérie Rickettsia), et appliquer une contrainte pour analyser directement le processus de
stratification dans I’évolution des chromosomes sexuels humains X et Y [18, 41].

Les algorithmes qui considérent les intervalles communs détectés initialement ou progressive-
ment et celui qui considére la stratification des chromosomes XY ont la méme complexité que
I'algorithme original, qui énumére toutes les traces. En plus, plusieurs expérimentations ont
montré que tous les variants qui prennent les contraintes biologiques en considération tournent
plus rapidement que l’algorithme original.

L’analyse qualitative des contraintes a montré qu’une partie améne a des approches symétriques
(quand le résultat de ’analyse des séquences qui trient le premier génome dans le deuxiéme peut
étre obtenu de 'analyse des séquences qui trient le deuxiéme génome dans le premier) et une
partie améne & des approches asymétriques. On a argumenté que, quand la contrainte est
asymétrique, elle peut étre apliquée que quand le rapport ancétre-descendant entre les deux

138

C.5. Applications

génomes analysés est connu et, dans ce cas, I’analyse a une direction bien definie. Ci-dessous on
résume les characteristiques de chacune des contraintes qu’on a considéré.

1. Détection initial d’intervalles communs sans cassures: symétrique, peut étre appliqué & des
chromosomes linéaires et circulaires.

2. Détection initial d’intervalles communs avec un nombre limité de cassures: asymétrique
(analyse doit étre faite du descendant vers ’ancétre), peut étre appliqué a des chromosomes
linéaires et circulaires.

3. Détection progressive d’intervalles communs: asymétrique (analyse doit étre faite du de-
scendant vers l’ancétre), peut étre appliqué a des chromosomes linéaires et circulaires.

4. Terminus-symétrie: symétrique, peut étre appliqué a des chromosomes circulaires unique-
ment.

5. Strata chez les chromosomes sexuels X'Y: asymétrique par concept (I’analyse doit étre faite
du chromosome X vers le Y), peut étre appliqué a des chromosomes linéaires uniquement.

C.5 APPLICATIONS

Avec I’énumération des traces qui respectent des contraintes biologiques, on a analysé le scénario
évolutif de la bactérie Rickettsia et des chromosomes sexuels X et Y chez I’étre humain. Par rap-
port aux résultats des études précédentes, qui se sont basées sur une seule séquence optimale [13,
55|, on a obtenu une meilleure caractérisation de ces scénarios évolutifs.

C.5.1 Analyse des chromosomes sexuels humains X et Y

Dans l'analyse des chromosomes sexuels X et Y chez ’homme, Ross et al. [55] ont proposé
une stratification particuliére du chromosome X, soutenue par une seule séquence optimale
d’inversions, obtenue grace au logiciel GRIMM [64]. Néanmoins, les auteurs n’ont pas verifié
I'existence d’autres séquences qui produisent la méme stratification, ou des séquences qui pro-
duisent d’autres stratifications. Avec 1'utilisation d’une stratification donnée comme contrainte
pour filtrer toutes les traces de séquences optimales, on a pu vérifier la distribution des séquences
optimales selon différentes stratifications du chromosome X. En particulier, on a pu vérifier que
toutes les séquences qui générent la stratification proposé par Ross et al sont dans la méme
sous-trace, donc, si on suppose que cette stratification est précise, alors les inversions données
par [55] ont été identifiées correctement.

Néanmoins, les permutations qui représentent les chromosomes X et Y, proposées par Ross
et al. [55] couvrent seulement les premiers 11.2Mbps du X, et méme pour cette partie réduite
du chromosome il y en a des limites de stratification alternatives. De plus, si on étend les
permutations pour couvrir une partie plus importante des chromosomes, le nombre de possibilités
pour placer les limites des strates augmente. En effet, seulement la limite entre la region pseudo-
autosomal (PAR) et la strate 5 et la limite entre les strates 5 et 4 sont bien établies. Les limites
des autres strates sont encore controversées et méme le nombre exacte de strates est discuté. On
a participé dans un travail collaboratif avec Lemaitre et al. [41], qui a présenté des arguments
supplémentaires pour expliquer le processus de stratification. En particulier, notre méthode pour
chercher des sous-traces qui respectent la formation des strates a été utilisée pour analyser les
permutations étendues et vérifier différentes hypothéses pour le placement de la limite entre les
strates 4 et 3.

139

Appendix C. Extended abstract in French

C.5.2 Analyse des bactéries Rickettsia

Le scénario évolutif de six espéces de la bactérie Rickettsia a été reconstruit par Blanc et al. [13]
et, en particulier, une séquence arbitraire a été proposé pour trier I’ancétre R2 dans Rickettsia
felis. Cette séquence est composé par cing inversions externes et quatre inversions symétriques
au terminus de la réplication. On a pu analyser 'univers de toutes les séquences qui trient
ces génomes avec notre méthode. La recherche de séquences avec un maximum de 3 inversions
externes et aucune inversion asymétrique, combinée avec la détection progressive d’intervalles
communs (affaiblie pour permettre deux cassures d’intervalles) a trouvé trois sous-traces dont
les séquences ont six inversions symeétriques, ce qui donne une meilleure characterisation du
scénario évolutif de ces génomes, par rapport au travail précédent de Blanc et al. [13].

C.6 BAOBABLUNA

Tous les algorithmes qu’on a développés sont implémentés en java, intégrés & BAOBABLUNA [16],
un logiciel qui contient des outils pour manipuler des génomes et des inversions. Le télécharge-
ment et le tutoriel de BAOBABLUNA sont disponibles en ligne & 1’adresse http://pbil.univ-1lyonl.
fr/software/luna/

Le logiciel BAOBABLUNA contient une structure qui est capable de compresser efficacement
les traces pour les garder dans un ensemble trié. La comparaison de la performance de cette
structure par rapport a une implementation standard d’un ensemble trié a montré qu’on a pu
économiser beaucoup de mémoire sans perdre en temps d’exécution.

C.7 CONCLUSIONS ET LIMITATIONS

Un de résultats les plus importants de notre travail est un algorithme qui génére direcetement
les traces de séquences d’inversions optimales qui trient un génome dans un autre et qui donne
aussi le nombre de séquences par trace, sans énumérer toutes les séquences [18]. L’algorithme qui
génere directement les traces représente une amélioration importante par rapport a I’énumeration
de toutes les séquences optimales. Néanmoins, pour les permutations dont la distance d’inversion
est supérieure a une certaine valeur, I’'univers de traces est encore trop grand pour étre interprété
et fréquemment il ne peut méme pas étre calculé, malgré l'optimization de l'utilisation de la
mémoire qu’on a implementé dans BAOBABLUNA. En effet, on n’est pas encore capable de
calculer les traces pour les permutations dont les distances d’inversion sont égales ou supérieures
a 20.

On a proposé alors l'utilisation de différentes contraintes biologiques pour réduire la taille de
I'ensemble & traiter. Différentes contraintes ont été proposées, comme les intervalles communs
(détectés initialement et progressivement), la stratification des chromosomes sexuels X et Y et la
symétrie des inversions par rapport au terminus de la réplication chez les bactéries. On a utilisé
ces méthodes pour analyser des cas réels d’évolution. En particulier, on a analysé le scénario
évolutif de la bactérie Rickettsia et des chromosomes sexuels X et Y chez I’étre humain. Par
rapport aux résultats des études précédentes, qui se sont basées sur une seule séquence optimale,
on obtient une meilleure caractérisation de ces scénarios évolutifs.

L’utilisation de contraintes biologiques est alors une bonne stratégie pour réduire ’ensemble
a traiter par la sélection de séquences d’inversions qui sont biologiquement plus significatives.
Toutefois, il n’y a pas de garantie de ’existence d’une séquence qui respecte les contraintes
données, alors cette approche peut amener & un résultat nul, ce qui n’est pas désirable. Affaiblir

140

C.8. Perspectives

les contraintes pour pouvoir obtenir un résultat non-nul est généralement possible, mais cette
procédure peut demander plusieurs essais des paramétres d’affaiblissement & un cotit de calcul
important.

La symétrie par rapport au terminus de la réplication, qui est une des contraintes le plus
prometteuses, a aussi des limitations. Le choix de valuers pour ses paramétres n’est pas trivial
et demande plusieurs essais. De plus, on adopte certaines simplifications, comme ignorer le
space entre les marqueurs et le déplacement du terminus de la réplication par chaque inversion
asymétrique. Il faut considérer ces simplications quand on interpréte le résultat des analyses.

Tous les algorithmes développés sont implémentés en java, integrés & BAOBABLUNA [16], un
logiciel qui contient des outils pour manipuler des génomes et des inversions. Le téléchargement
et le tutoriel de BAOBABLUNA sont disponibles en ligne.

C.8 PERSPECTIVES

En ce qui concerne le programme pour analyser les traces, d’autres contraintes peuvent étre
introduites. La difficulté ici est de mieux connaitre le processus évolutif d’organismes relativement
proches et d’isoler les proprietés qui peuvent étre utilisées pour filtrer les inversions & chaque pas
de la construction de traces.

Trouver d’autres applications réels pour utiliser la méthode avec les contraintes qui sont déja
implementés est aussi un objectif & poursuivre. En particulier, on croit que la détection progres-
sive d’intervalles communs et les inversions symétriques par rapport au terminus de la réplication
chez les chromosomes circulaires peuvent révéler des détails intéressants sur le processus de réar-
rangement de ces organismes. Comme on peut traiter que des génomes relativement proches, la
difficulté est de trouver des données adéquates. Un bon candidat est la bactérie Mycbacterium,
dont I'ancétre a été reconstruit récemment [30].

De plus, la méthode qui cherche les inversions symétriques peut étre ameliorée par I'application
d’une limitation sur le déplacement du terminus de la réplication. L’avantage de cette approche
est que, a la suite d’une inversion qui déplace le terminus, elle favorise la sélection des inversions
qui compensent le déplacement précédent, alors 'ordre des inversions peut étre plus fortement
restreint.

La méthode qui cherche les sous-traces qui respectent la formation des strates chez les chro-
mosomes sexuels peut étre utilisée pour analyser d’autres espéces. On a trés peu de données
disponibles pour l'instant, mais on espére qu’on aura de plus en plus de séquences de chromo-
somes sexuels de différentes espéces dans le futur proche.

141

Appendix C. Extended abstract in French

142

Appendix D

Article submitted to Genome Biology and
Evolution

We developed the study Footprints of inversions at present and past pseudoautosomal boundaries
in human sex chromosomes in collaboration with Lemaitre et al. [41]. This work concerns the
evolution of the human sexual chromosomes X and Y and was recently submitted to the journal
Genome Biology and Evolution. The submitted version is attached after the references.

143

Appendix D. Article submitted to Genome Biology and Evolution

144

REFERENCES

REFERENCES

[1] Adi, S., Braga, M. D. V., Fernandes, C., Ferreira, C., Martinez, F., Sagot, M.-F., Stefanes,
M., Tjandraatmadja, C. and Wakabayashi, Y., “Repetition-free longest common subsequence”,
Discrete Applied Mathematics, submitted, 2009 (a preliminary version appeared in Latin-
American Algorithms, Graphs and Optimization Symposium (LAGOS), Eletronic Notes in
Discrete Mathematics, Vol. 30, Pages 243-248, 2008).

[2] Andersson S. G. E. and Kurland C. G., “Reductive evolution of resident genomes”, Trends in
Microbiology, Vol. 6, Number 7, 263—268, 1998.

[3] Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., and Pro-
tasi, M., Complezity and Approzimation: Combinatorial Optimization Problems and Their
Approzimability Properties, Springer, 1999.

[4] Bader, D. A., Moret, B. M. E. and Yan, M., “A linear-time algorithm for computing inversion
distances between signed permutations with an experimental study”, J. Comput. Biol. 8, 5
(2001), 483-491.

[5] Vineet Bafna, V., Pevzner, P. A.,; “Sorting by Transpositions”, SIAM Journal on Discrete
Mathematics, vol. 11, issue 2, 224-240, 1998.

[6] Berard S., Bergeron A. and Chauve C., “Conserved structures in evolution scenarios”, RCG
2004, Lecture Notes in Bioinformatics, vol. 3388, 1-15, 2005.

[7] Berard S., Bergeron A., Chauve C. and Paul C., “Perfect sorting by reversals is not always
difficult”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 4, No.
1, 4-16, 2007.

[8] Bergeron A., “A very elementary presentation of the Hannenhalli-Pevzner theory”, Discrete
Applied Mathematics, vol. 146, 134-145, 2005.

[9] Bergeron A., Chauve C., Hartmann T. and St-Onge K., “On the properties of sequences of
reversals that sort a signed permutation”, JOBIM 2002, 99-108, 2002.

[10] Bergeron A., Heber S. and Stoye J., “Common intervals and sorting by reversals: a marriage
of necessity”, Bioinformatics, 18 (Suppl. 2): S54-63, 2002.

[11] Bergeron A., Mixtacki J. and Stoye J., “The inversion distance problem”, Mathematics of
evolution and phylogeny (O. Gascuel Ed.) Oxford University Press, 2005.

[12] Bergroth, L., Hakonen, H. and Raita T., “A Survey of Longest Common Subsequence Algo-
rithms”, SPIRE 00: pages 39-48, 2000.

[13] Blanc G., Ogata H., Robert C., Audic S., Suhre K., Vestris G., Claverie J.-M. and Raoult
D., “Reductive genome evolution from the mother of Rickettsia”, PLoS Genetics, volume 3, p.
103-114, 2007.

[14] Blin, G., Fertin, G. and Chauve, C., “The breakpoint distance for signed sequences”, Texts
in Algorithms, vol. 3, pages 3-16, CompBioNets 2004.

[15] Bonizzoni P., Della Vedova G., Dondi R., Fertin G. and Vialette S., “Exemplar Longest
Common Subsequence”, ACM/IEEE Trans. Computational Biology and Bioinformatics, Vol.
4, No. 4, pages 535-543, 2007.

[16] Braga M. D. V., “baobabLuna: the solution space of sorting by reversals”, submitted to

145

REFERENCES

Bioinformatics, 2009.

[17] Braga M. D. V., Gautier C. and Sagot M.-F., “An asymmetric approach to preserve common
intervals while sorting by reversals”, submitted to Algorithms for Molecular Biology, 2009.

[18] Braga M. D. V., Sagot M.-F., Scornavacca C. and Tannier E., “Exploring the solution space
of sorting by reversals with experiments and an application to evolution”, Transactions on
Computational Biology and Bioinformatics, volume 5, number 3, 348-356, 2008 (A preliminary
version appeared in ISBRA 2007, Lecture Notes in Bioinformatics vol. 4463, 293-304).

[19] Brightwell G. and Winkler P., “Counting linear extensions is #P-complete”, STOC ’91:
Proceedings of the twenty-third annual ACM Symposium on Theory of Computing, ACM Press,
1991.

[20] Bryant, D., “The complexity of calculating exemplar distances”, 2000.

[21] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M., Pattern-Oriented
Software Architecture: A System of Patterns, John Wiley and Sons Ltd, Chichester, UK, 1996.

[22] Caprara, A., “Sorting by reversals is difficult”, RECOMB, 75-83, 1997.

[23] Cartier, P. and Foata D., “Problémes combinatoires de commutations et réarrangements”,
Lecture Notes in Math, vol. 85, Springer, Berlin, 1969.

[24] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction to algorithms,
MIT Press, 2. edition, 2001.

[25] Diekert V. and Rozenberg G. (eds), The book of traces, World Scientific, 1995.

[26] Diekmann Y., Sagot M.F. and Tannier E., “Evolution under reversals: parsimony and conser-
vation of common intervals”, IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, vol. 4, No. 2, 301-309 (A preliminary version appeared in COCOON 2005, Lecture
Notes in Computer Science, vol. 3595, 42-51).

[27] Eisen J. A., Heidelberg J. F., White O. and Salzberg S. L., “Evidence for symmetric chro-
mosomal inversions around the replication origin in bacteria”, Genome Biology, vol. 1, No. 6,
2000.

[28] Fulkerson D. R., “Note on Dilworth’s decomposition theorem for partially ordered sets”,
Proc. Amer. Math. Soc. 7, 701-702, 1956.

[29] Goffeau A. et al., “Life with 6000 genes”, Science 274. doi:10.1126/science.274.5287.546,
1996.

[30] Gomez-Valero, L., Rocha, E. P. C., Latorre, A. and Silva, F. J., “Reconstructing the ancestor
of Mycobacyerium leprae: the dynamics of gene loss and genome reduction”, Genome Research,
vol. 17, 1178-1185, 2007.

[31] Han Y., “Improving the Efficiency of Sorting by Reversals”’, Proceedings of The 2006 Inter-
national Conference on Bioinformatics and Computational Biology, CSREA Press, Las Vegas,
Nevada, USA, 2006.

[32] Hannenhalli S. and Pevzner P., “Iransforming cabbage into turnip (polynomial algorithm
for sorting signed permutations by reversals)”, Journal of the ACM, 46:1-27, 1999.

[33] Hannenhalli, S. and Pevzner, P., “Iransforming men into mice (polynomial algorithm for
genomic distance problem)”, In Proceedings of the IEEE 36th Annual Symposium on Foun-

146

REFERENCES

dations of Computer Science, pages 581-592, 1995.

[34] Heber, S. and Stoye, J., “Finding all common intervals of k& permutations”, in Combinatorial
Pattern Matching, 12th Annual Symposium, Lecture Notes in Computer Science, vol. 2089,
207-218, 2001.

[35] 1Jdo J. W., Baldini A., Ward D. C., Reeders S. T., Wells R. A., “Origin of human chro-
mosome 2: an ancestral telomere-telomere fusion”, Proc Natl Acad Sci U S A, 88(20):9051-5,
1991.

[36] Iwase, M., Satta, Y., Hirai, Y., Hirai, H., Imai, H., and Takahata, N., “The amelogenin loci
span an ancient pseudoautosomal boundary in diverse mammalian species”, PNAS, vol. 100,
no. 9, 5258-5263, 2003.

[37] Kaplan, H., Shamir, R., and Tarjan, R. E., “Faster and simpler algorithm for sorting signed
permutations by reversals”, SIAM J. Comput, vol. 29, 880-892, 1999.

[38] Kececioglu, J. and Sankoff, D., “Exact and approximation algorithms for sorting by reversals,
with application to genome rearrangement”, Algorithmica, 13:1/2, 180-210, 1995.

[39] Knuth, D., “The Art of Computer Programming, Volume 3: Sorting and Searching”, Second
Edition, Addison-Wesley, 1998.

[40] Lahn B. T. and Page D. C., “Four evolutionary strata on the human X chromosome”, Science,
vol. 286, 964-967, 1999.

[41] Lemaitre C., Braga M. D. V., Gautier C., Sagot M.-F., Tannier E. and Marais G. A.
B., “Footprints of inversions at present and past pseudoautosomal boundaries in human sex
chromosomes”, submitted to Genome Biology and Evolution, 2009'°.

[42] Mackiewicz, P., Mackiewicz, D., Kowalczuk, M. and Cebrat S.,“Flip-flop around the origin
and terminus of replication in prokaryotic genomes”, Genome Biology, vol. 2, No. 12, 2001.

[43] Mazowita, M., Haque, L. and Sankoff, D., “Stability of rearrangement measures in the
comparison of genome sequences”, Journal of Computational Biology, vol. 13, 554-566, 2006.

[44] McLysaght, A., Seoighe, C. and Wolfe K. H., “High frequency of inversions during eukaryote
gene order evolution”, in Comparative Genomics: Empirical and Analytical Approaches to Gene
Order Dynamics, Map Alignment and the Fvolution of Gene Families, D. Sankoff and J. H.
Nadeau (Eds.), 47-55, 2000.

[45] Moret, B.M.E., Wyman, S., Bader, D.A., Warnow, T., and Yan, M., “A new implementation
and detailed study of breakpoint analysis”, Proc. 6th Pacific Symp. on Biocomputing (PSB
2001), Hawaii, World Scientific Pub., 583-594, 2001.

[46] Nakabachi A., Yamashita A., Toh H., Ishikawa H., Dunbar H., Moran N., Hattori M., “The
160-kilobase genome of the bacterial endosymbiont Carsonella”, Science, 314 (5797): 267, 2006.

[47] Ogata H., Renesto P., Audic S., Robert C., Blanc G., Fournier P.-E., Parinello H., Claverie
J.-M. and Raoult D., “Genome sequence of Rickettsia felis identifies the first putative conjuga-
tive plasmid in an obligate intracellular parasite”, PLoS Biology, volume 3, p. 1-12, 2005.

[48] Ogata H., La Scola B., Audic S., Renesto P., Blanc G., Robert C., Fournier P.-E., Claverie
J.-M. and Raoult D., “Genome sequence of Rickettsia bellii illuminates the role of amoebae in

19The work of Lemaitre et al. is attached at the end of this manuscript

147

REFERENCES

gene exchange between intracellular pathogens”, PLoS Genetics, volume 2, p. 733-744, 2006.
[49] Ohno, S., Evolution by gene duplication, Springer-Verlag, New York, 1970.
[50] Ohno, S., Sex chromosomes and sex-linked genes, Springer, Berlin, 1967.

[51] Papadimitriou, C. H. and Yannakakis, M., “Optimization, approximation and complexity
classes”, Journal of Computer and System Sciences, 43:425-440, 1991.

[52] Parfrey, L. W., Lahr, D. J. G., Katz, L. A., “The Dynamic Nature of Eukaryotic Genomes”,
Molecular Biology and Evolution, 25 (4): 787, 2008.

[53] Pevzner P., Computational Molecular Biology - An Algorithmic Approach, The MIT Press,
2000.

[54] Pradella S., Hans A., Sproer C., Reichenbach H., Gerth K., Beyer S., “Characterisation,
genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ceb6”.
Arch Microbiol, 178 (6): 484-92, 2002.

[55] Ross M. T. et al., “The DNA sequence of the human X chromosome”, Nature, vol. 434, p.
325-337, 2005.

[56] Sankoff, D., “Gene and genome duplication”, Current Opinion in Genetics and Development,
vol. 11, p. 681-684, 2001.

[57] Sankoff, D., “Genome Rearrangement with gene families”, Bioinformatics, vol. 15, no. 11,
pages 909-917, 1999.

[58] Schneiker S. et al., “Complete genome sequence of the myxobacterium Sorangium cellulo-
sum”, Nature Biotechnology, 25, 1281-1289, 2007.

[59] Siepel A., “An algorithm to enumerate sorting reversals for signed permutations”, J Comput
Biol, 10:575-597, 2003.

[60] Skaletsky H. et al., “The male-specific region of the human Y chromosome is a mosaic of
discrete sequence classes”, Nature, vol. 423, 825-837, 2003.

[61] Steiner G., “An algorithm to generate the ideals of a partial order”, Operations Research
Letters, 5(6):317-320, 1986.

[62] Steiner G., “Polynomial algorithms to count linear extensions in certain posets”, Congressus
Numerantium, 75, 71-90, 1990

[63] Tannier E., Bergeron A. and Sagot M.-F., “Advances on Sorting by Reversals”, Discrete
Applied Mathematics, vol. 155, no. 6-7, 881-888, 2007 (a preliminary version appeared in
CPM 2004, Lecture Notes in Computer Science, vol. 3595, 42-51).

[64] Tesler, G., “GRIMM: genome rearrangements web server”, Bioinformatics, vol. 18, no. 3,
492-493, 2002.

[65] Weaver R. F., Molecular Biology, Mc Graw Hill, second edition, 2002.

[66] Zheng, C., Lenert, A. and Sankoff, D., “Reversal distance for partially ordered genomes”,
Bioinformatics 21, 1502-1508, 2005.

148

Inversions and evolution of sex chromosomes

Research Article

Footprints of inversions at present and past
pseudoautosomal boundaries in human sex

chromosomes

Claire Lemaitre*1, Marilia DV Braga* 1 Christian Gautierl, Marie-France Sagotl, Eric

TannierYl and Gabriel AB Maraisf1

1 Université de Lyon; Université Lyon 1; Centre National de la Recherche Scientifique;
Institut National de Recherche en Informatique et en Automatique; UMR5558;
Laboratoire de Biométrie et Biologie évolutive; Villeurbanne, F-69622 cedex, France.

* Equal contribution

1 Corresponding authors:
- G. Marais - marais@biomserv.univ-lvonl.fr - tel: +33 4 72 43 29 09, fax: +334 72 43 13 88
- E. Tannier — Eric.Tannier@inria.fr - tel: +33 4 26 23 44 74, fax: +33 472 43 13 88

Running head: Inversions and evolution of sex chromosomes

Keywords: inversion, duplication, recombination, sex chromosomes, evolutionary strata

List of nonstandard abbreviations:

PAR = pseudoautosomal region, XAR = X-added region, NRY = non-recombining Y, dg =
rate of synonymous substitutions, d = rate of non-synonymous substitutions, NHE] =

non-homologous end joining

1/34

Inversions and evolution of sex chromosomes

Abstract

Inversions are known to occur repeatedly in genome evolution but their
evolutionary significance remains obscure. It has been suggested that five
large inversions might have affected the human Y chromosome and reduced
the pseudoautosomal region (PAR) in five steps. This could explain the five
evolutionary strata (chromosomal domains with different levels of X-Y
divergence) that were observed in the human X chromosome. Clear evidence
for these inversions is however missing. Here we looked for such evidence by
focusing on a region (the X Added Region - called XAR - that includes the PAR
and the most recent strata 3, 4 and 5) that has conserved gene order
between the human X and its chicken homolog. This means that detected
rearrangements between X and Y in this region should have occurred in Y. We
first estimated and analysed the whole set of parsimonious scenarios of Y
inversions given the gene orders in XAR and in its Y homolog. Comparing
these scenarios to scenarios for simulated sequences (with and without
formation of strata) suggests that the most recent strata 4 and 5 in humans
have been formed by inversions on the Y chromosome. By comparing DNA
sequences from X and Y, we then found clear evidence of two Y inversions
associated with duplications that coincide with the boundaries of strata 4 and
5. Divergence between the duplicates is in agreement with the timing of
strata 4 and 5 formation. These duplicates show a complex pattern of gene
conversion that resembles the pattern previously found for AMELX and
AMELY, a locus of stratum 3. This suggests that the AMEL locus - despite
AMELY being unbroken- was possibly involved in a Y inversion that formed
stratum 3. However, no clear evidence supporting the formation of stratum 3
by a Y inversion was found probably because this stratum is too old for such
inversions to be detectable. Our results on XAR strongly support the view
that in humans, the most recent strata have arisen by inversions on the Y and
suggest that inversions have played a major role in the differentiation of our
sex chromosomes.

350 words

2/34

Inversions and evolution of sex chromosomes

Introduction

Chromosomal inversions are very common in animal, fungal and plant genomes
(Murphy et al. 2005, Yogeeswaran et al. 2005, Fischer et al. 2006, Ranz et al. 2007,
Bhutkar et al. 2008). However, the forces that establish inversions and their
evolutionary significance remain poorly understood. An important characteristic of
inversions is that recombination is suppressed at the inverted regions in chromosomal
heterozygotes (Navarro et al. 1997, Andolfatto et al. 2001). This makes inversions
particularly prone to accumulating mutations involved in local adaptation. Based on this
ground, it has been suggested that inversions could have a significant role in speciation
(Kirkpatrick & Barton 2006). Another possible case of the evolutionary importance of
inversions is the evolution of sex determination and sex chromosomes.

Well-differentiated sex chromosomes such as the human XY chromosomes do not
recombine except in small regions (called pseudoautosomal regions, PARs). Theory
predicts that recombination between newly formed sex chromosomes should be
suppressed at male determining genes so that they are genetically linked to the Y and
no neutral or hermaphroditic recombinants are formed (Nei 1969, Charlesworth &
Charlesworth 1978). It is also predicted that later in the evolution of the sex
chromosomes, the accumulation of antagonistic genes (beneficial for males and
deleterious for females) should gradually suppress recombination between X and Y
making the Y chromosome a fully or almost fully non-recombining chromosome
(Charlesworth et al. 2005).

In a pioneer work, Lahn & Page (1999) found that synonymous divergence between X-Y
homologous gene pairs correlated with gene position on the X chromosome in a stair-
like shape. They took this as evidence that human XY were originally recombining
autosomes that gradually stopped recombining, forming ""evolutionary strata" (i.e.
groups of genes which, because they do not recombine anymore, start diverging at the
same time). Since gene order for those homologous gene pairs was found to be
completely different on the X and on the Y chromosomes, they suggested that large Y
inversions might have caused the evolutionary strata. The XG gene that spans the
current pseudoautosomal boundary on the human X but is truncated on the human Y
fits well with this idea.

3/34

Inversions and evolution of sex chromosomes

Iwase and colleagues (2003) looked at Amelogenine, a gene that they believed to be
located on an ancient pseudoautosomal boundary (strata 3/4) because the X-Y
divergence drops from 30% to 10% within this gene however this gene was thought to
be not involved in an Y inversion since its Y copy (AMELY) is not truncated. The
sequencing of the euchromatic part of the human Y made the picture even more
blurred instead of clarifying it. Skaletsky et al. (2003) re-analysed XY gene pairs as in
Lahn & Page (1999) with more data but they did not find four well defined strata as in
Lahn & Page (1999). The limits between strata seemed to overlap, especially those of
the most recent strata (3 and 4). Following this work, doubts were raised about the Y
inversions model put forward by Lahn & Page (Charlesworth et al. 2005). Chromosomal
rearrangements are known to accumulate at a faster rate in regions of reduced
recombination. The rearrangements between X and Y could well have post-dated the
formation of the strata (and not pre-dated it as expected in the Lahn & Page model).

In the paper reporting the complete sequencing of the human X, Amelogenine was
dismissed as evidence against the Y inversion model (Ross et al. 2005). AMELX and
AMELY can do gene conversion, which could explain the Amelogenine peculiar X-Y
divergence pattern (Marais & Galtier 2003, Ross et al. 2005). Using the GRIMM
software, Ross and colleagues reported the first attempt to reconstruct the X-Y
chromosomal rearrangements and found a scenario consistent with strata 4 and 5, a
new stratum that they defined. Inferring a scenario of inversions is known to be a very
challenging task when analysing a sequence with relatively few markers and many
inversions as in the case of XY chromosomes. GRIMM uses an algorithm known to infer
efficiently the minimum number of inversions from one sequence to another. However,
GRIMM does not include any framework to find and analyse all the optimal scenarios. It
just gives one arbitrarily drawn optimal scenario, which considerably weakens the
conclusions of Ross et al. (2005). Thus, evidence for the model of Y inversions in

humans remains dubious.

The gradual loss of recombination that formed the strata had a profound impact on the
human Y degeneration. The strata have different levels of degeneration (the most
recent ones being the least degenerate) and the level of dosage compensation, which
is known to be a response to Y degeneration, is correlated with the strata (the most

4/34

Inversions and evolution of sex chromosomes

recent ones having less genes showing dosage compensation) (Carrel & Willard 2005).
The gradual loss of recombination between our sex chromosomes has enhanced some
processes of degeneration (genetic hitchhiking) over others (Muller’s ratchet) compared
to what would have happen if recombination had been stopped once (Bachtrog 2008).
Evolutionary strata are not a bizarre feature of our sex chromosomes. They have been
found in other organisms such as rodents (Sandstedt & Tucker 2004), birds (Handley et
al. 2004, Nam & Ellegren 2008) and plants (Nicolas et al. 2005, Bergero et al. 2007) and
seem to be a general phenomenon in heteromorphic sex chromosomes. Despite the
importance of the strata for the biology and evolution of the sex chromosomes in
general, we still know very little on how they are formed.

Here our goal was to test whether the reconstruction of the human X-Y chromosomal
rearrangements fits with the currently defined evolutionary strata in our species. We
focused on XAR (=X-Added Region, it is located on the X p-arm and comprises PAR and
strata 5, 4 and 3 that show about 5, 10 and 30% of X-Y divergence respectively)
because gene order is conserved between human and chicken (human XAR matches
with chicken chromosome 1q with almost no rearrangements, see Ross et al. 2005).
Detected rearrangements between X and Y in that region should have occurred in Y. We
first used the same 12 markers as in Ross et al. (2005) and evaluated the number of
possible scenarios of Y inversions given the gene orders in XAR and in its Y homolog
using a method that we developed (Braga et al. 2008). We found that there are many
scenarios in which Y inversions coincide with strata boundaries. Using simulations with
randomly distributed inversions on Y, we found that it is unlikely that this pattern has
emerged just by chance. Another set of simulations with Y inversions occurring only
among strata indicates that recent strata have arisen by inversions on the Y.

If Y inversions have formed the strata, by finding and analysing the Y regions
homologous to the strata boundaries on the X, we should be able to find footprints of
those inversions. To do that we used a method designed to detect and analyse genomic
regions with breakpoints (Lemaitre et al. 2008) and we found clear evidence of
inversions associated with duplications at the PAR/stratum 5 and the strata 5/4
boundaries. Analysis of the divergence between duplicates for both boundaries allowed
us to date the inversions and is in agreement with stratum 5 being more recent than
stratum 4. This strongly suggests that in humans, recent strata have arisen by

5/34

Inversions and evolution of sex chromosomes

inversions on the Y and give support to the idea Lahn & Page first put forward that
recombination between X and Y stopped because of inversions on the Y. A pair of
duplicates associated with an inversion shows evidence for gene conversion and this
suggests that gene conversion in AMEL is in fact consistent with AMEL spanning the
strata 3/4 boundary. However, we could not find either clear footprints of inversions for
stratum 3 or any optimal scenarios consistent with the formation of stratum 3 by a
single Y inversion (including all the available markers for this stratum and not just two
as in Ross et al. 2005) but this may simply be because stratum 3 is too old,footprints of
inversions have been erased and X-Y are too rearranged. We discuss the case of ancient

human strata.

Materials and Methods

Identification of nhew markers

Already known markers are from Skaletsky et al. (2003) and Ross et al. (2005). New
markers were identified from an alignment of the human X-Y chromosomes (from NCBI
version 36, hgl8) using BlastZ (Schwartz et al. 2003). Local similarities found with
BlastZ were concatenated if they had the same order and orientation and if they were
less than 30 Kb apart on both chromosomes. Concatenates smaller than 30 Kb and
those located in known ampliconic regions and in the peri-centromeric regions were
discarded. We thus obtained three new markers (see Table 1).

Analysis of optimal scenarios for X-Y rearrangements

To analyse the formation of strata 4 and 5, we ran the Braga et al. (2008) program on
the following sequences: X =(1,2,3,4,5,6,7,8,9,10,11,12) and Y =(-12,11,-2,-1,-10,-9,8,-
5,7,6,-4,3) with numbers corresponding to markers in Ross et al. (2005) and minus
indicating a change in orientation. To analyse the formation of stratum 3, we ran the
same program on the following sequences: X
=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23) and

Y =(19,14,-15,12,-2,-1,13,22,20,-23,16,-11,-10,9,-6,8,7,-5,4,-3,21,17,-18). We also did
the analysis without marker 23 (see Discussion).

6/34

Inversions and evolution of sex chromosomes

Simulation of inversions
Simulations were conducted to create a sequence Y from a sequence X with a given
number of inversions d. A simulated Y sequence was made in d steps. At step /i, two

positions were selected at random, an inversion between these two positions was

produced. The inversion was accepted only if going back from Y;j (Y after i inversions) to

Yo (Y without inversion = X) implied i inversions (parsimony criterion). We stopped the

process after d parsimonious inversions. We repeated this 1000 times and obtained the
free inversions simulations. The set of strata-constrained simulations was obtained by
adding another constraint in the simulation process. The first inversion had to form
stratum 3 (markers 11, 12). Then, two inversions had to take place in the following
order: one inversion including all stratum 4 markers (with the possibility of including
some markers of stratum 3) and a second inversion including all stratum 5 markers
(with the possibility of including some markers of strata 4 and 3). The other inversions
occurred in a non-determined order within the already formed strata. All inversions had
to fulfil the parsimony criterion (see above). Different values of d were tested and gave
very similar results. Results shown in the paper (Table 2, Figure 2) are with d = 8
(results for other values of d are shown in the supplementary data)

Analysis of breakpoints

We used the method by Lemaitre et al. (2008). Briefly, this method works on breakpoint
regions. A breakpoint is defined by two adjacent markers on one sequence (here X) that
are not adjacent on the homologous sequence (here Y). By aligning an X region with a
breakpoint with its two corresponding Y regions, it is possible to locate precisely the
breakpoint and to analyse it. Alignments were performed with BlastZ (Schwartz et al.
2003) on repeat-free (using RepeatMasker) sequences. The minimum breakpoint
interval is obtained by looking at the distribution of hits using a partitioning algorithm.

Levels of divergence between duplicates

Duplicates found with the method described in the previous section were aligned on the
entire Y chromosome and no other copies were found. The level of divergence between
duplicates was obtained using exact pairwise alignment tools (the Water and Matcher
programs from the EMBOSS tools suite, see Rice et al. 2000).

7/34

Inversions and evolution of sex chromosomes

For the analysis of XG, we ran PAML on coding sequences to get dy and dg values (Yang

1997, 2007 and PAML on the web: http://coot.embl.de/pal2nal/, Suyama et al. 2006). The
percentage of similarity for total (coding + non-coding) DNA was obtained by aligning

seqguences using BlastZ with the chaining option (Schwartz et al. 2003). Only blocks of
more than 70 % of similarity were kept. To compute the % of similarity, we summed all
the identical sites and divided by the size of the X sequence.

Results and Discussion

Comparing scenarios for X-Y chromosomal rearrangements and evolutionary
strata 4 and 5

Ross et al. (2005) presented a scenario of inversions between the human X and Y
chromosomes consistent with the evolutionary strata 3, 4 and 5. They obtained it using
GRIMM (Tesler 2002), a software that uses marker order in two sequences to propose a
scenario of inversions minimising the total number of inversion events and applied it to
12 pairs of X-Y markers spanning a small part of stratum 3, the whole strata 4, 5 and
PAR (and totalling 11 Mb of sequences). In the proposed scenario (shown in Figure 1),
there are two large inversions that coincide with strata 4 and 5 and could have formed
them, and five small inversions that are included in the strata and do not affect strata
boundaries. They also found an inversion consistent with stratum 3 but because only a
small part of this stratum was investigated, no conclusion could be drawn. This showed
for the first time since Lahn and Page (1999) had proposed their model for the
evolution of strata that it was possible to find a scenario of inversions consistent with
the human strata, at least the most recent ones (i.e. strata 4 and 5). However, there is
an ongoing debate about how relevant is the scenario proposed by GRIMM and other
similar programs. GRIMM uses the Hannenhalli-Pevzner (1995) algorithm and we know
that it is an accurate way of getting the minimum number of inversions between two
sequences with different marker orders. The scenario proposed by GRIMM however is
only one possible optimal scenario (i.e. with the minimum number of inversions). There
may be many other such optimal scenarios and GRIMM does not offer the possibility of
identifying and analysing these scenarios. This of course weakens the conclusion on the
evolution of human strata from the GRIMM results. The proposed scenario is consistent

8/34

Inversions and evolution of sex chromosomes

with strata formation but there may be equally good scenarios not consistent with
strata formation. To solve this problem in general, it was suggested to enumerate all
the possible optimal scenarios (Siepel 2003). The result of this showed that the number
of optimal scenarios is often huge. Such an enumeration method is however too
demanding in terms of computational time. A mathematical formalism was proposed to
fasten this process (Bergeron et al. 2002). Briefly, the idea is to group optimal scenarios
into classes of equivalence. All scenarios in any one of the classes are composed by the
same inversions but in different order. Finding an efficient algorithm to enumerate all
classes of equivalence remained however an open problem for a few years, until Braga
et al. (2008) designed and implemented one, which is efficient when the number of
rearranged markers is not too large.

We applied this method to the same 12 markers used by Ross et al. (2005) to evaluate
how their conclusion was affected by analysing all the optimal scenarios (see Table 1
and Figure 1 for more information about these 12 markers). We found six classes of
equivalence (i.e. groups of optimal scenarios with the same inversions but in different
order). The solution proposed by GRIMM is in one of them but there are 5 other classes
with different inversions for a total of 31752 optimal scenarios. We then counted the
number of optimal scenarios consistent with strata 3, 4 and 5 with strata boundaries as
defined in Lahn & Page (1999), Skaletsky et al. (2003) and corrected by Ross et al.
(2005). We expected that in these scenarios, there were three ordered inversions
affecting, first markers in stratum 3 (markers 11, 12), then markers in stratum 4
(markers 3 to 10), and finally markers in stratum 5 (markers 1, 2). A given inversion
forming a stratum could comprise additional markers from the previous stratum (for
instance, markers 11 and 12 could be involved in a large inversion forming stratum 4 as
in Figure 1). The remaining inversions were small-scale ones occurring within already
formed strata. With these criteria, we found that only one class of equivalence - the
one including the GRIMM scenario — agrees with the currently defined strata 3, 4 and 5
(see Table 2). Inside this class, 420 scenarios were found consistent with these strata.
We also looked at scenarios consistent with 3 strata with different boundaries than the
ones proposed in Ross et al. (2005), with 2 strata, with one stratum only and without
strata (see Table 2). In each case, we found a number of optimal scenarios consistent
with the tested strata structure depending on the classes (see Table 2). When pooling
results for all classes, we found more optimal scenarios for the currently defined 3

9/34

Inversions and evolution of sex chromosomes

strata (420) than for the alternative 3 strata (120) but there are more scenarios for 2
strata (2520) and 1 stratum (2520) and even more for no stratum at all (26172) than
for the currently defined 3 strata.

We then performed simulations with random inversions in order to help us interpret the
data. We did a first round of simulations with free inversions (see Methods) among 12
markers with the number of inversions being equal to the observed number for the
human X-Y data of Ross et al. (2005). In the second round of simulations, the idea was
to model the formation of strata by inversions. We simulated inversions that were
constrained by 3 strata with boundaries mimicking the currently defined strata 3, 4 and
5 (see Methods). In the process of simulations, inversions had to be ordered (starting
with the oldest strata markers and finishing with the youngest) and had to respect
strata boundaries. Small inversions could occur in already formed strata only. We called
this set of simulations the “strata-constrained inversions”. We then ran the method by
Braga et al. (2008) on the simulated sequences (comparing each time the initial
sequence and one sequence with simulated inversions). This generated distributions of
parameters such as total number of optimal scenarios, total number of classes of
equivalence and others. The mean values of these parameters are shown in Table 3. We
compared the distributions of free versus strata-constrained simulations by using non-
parametric statistics. For all of them, the distributions for free and strata-constrained
simulations are significantly different (see Table 3). The most relevant parameter is
probably the number of optimal scenarios consistent with the 3 strata over the total
number of optimal scenarios (#strata_scen/#tot_scen). We found that this parameter is

significantly different for free and strata-constrained simulations (p < 10-16), Figure 2
shows the distributions of this parameter for the two sets of simulations. The observed
value for the human XY data (from Table 2) is a clear outlier in the “free” distribution.
We get a p-value of 0.009 from this comparison, which means that it is very unlikely
that the inversions between X and Y (in the region studied by Ross et al. (2005))
occurred freely along the Y sequence without any constraints. The comparison of the
observed value of #strata_scen/#tot_scen for the human XY data with the distribution
of the same parameter for the strata-constrained simulations resulted in a non-
significant p-value, which means that the process used to simulate this set may be the
same for the human sex chromosomes. Although the two sets of simulations that we
generated are extreme cases and we did not investigate intermediary cases, these

10/34

Inversions and evolution of sex chromosomes

results suggest that the hypothesis that evolutionary strata 4 and 5 (no conclusion can
be drawn for stratum 3, see above) have been formed by Y inversions is a likely
hypothesis.

Looking at chromosomal breakpoints near strata 4 and 5 boundaries

A strong evidence for the model of Y inversions put forward by Lahn & Page would be to
find a region spanning a strata boundary on the X chromosome matching with two
broken bits on the Y chromosome. At the pseudoautosomal boundary, the Y copy of the
XG gene is truncated. If stratum 5 had been formed by a Y inversion, we should be able
to find the missing bit of XG at the end of the putative inversion(s) having formed
stratum 5 on the Y chromosome (upstream of marker 1 on the Y sequence on Figure 1).
The same rationale can be applied to stratum 4. To check this, we used a method to
precisely detect and analyse chromosomal breakpoints in sequences. This method
starts with a BlastZ (Schwartz et al. 2003) comparison between two sequences where
there is a breakpoint (Lemaitre et al. 2008). It maps all the hits on the sequences and
uses the distribution of hits to find the minimum interval where the breakpoint is (see
Methods). It gives a precise picture of the similarities at breakpoints.

Figure 3A shows the results for PAR/stratum 5. We found similarities between X and Y at
the end of the PAR region (from 2.67 to 2.71 Mb on both X and Y sequences). This
includes the part of the XG gene found both in X and Y that defines the human
pseudoautosomal boundary. Interestingly, we found also similarities between PAR and a
sequence around position 13 Mb of the Y chromosome that happens to be one of the
ends of stratum 5 on that chromosome. These similarities extend over 40 Kb and mirror
the similarities found in the PAR, which clearly indicates an inverted duplication.
Instead of finding only the missing bit of the XG region when looking at the end of
stratum 5 in the Y chromosome, we thus found an inverted duplication of the almost
entire XG region. Analysis of the strata 4/5 boundary gave very similar results (see
Figure 3B). Again the dotplot indicates duplications with similarities between the X
region from 3.66 to 3.74 Mb (end of stratum 5) and both Y regions from 7.06 to 7.18 Mb
(end of stratum 5) and from 19.72 to 19.8 Mb (beginning of stratum 4). Duplicated
sequences flanking stratum 4 suggest again a single inversion event spanning the

11/34

Inversions and evolution of sex chromosomes

whole stratum 4. In Figure 3C, we show the duplicates and their orientations on the X
and Y sequences for PAR/stratum 5 and stratum 5/stratum 4.

Inversions are often found associated with duplications (Casals & Navarro 2007, Kehrer-
Sawatzki & Cooper 2008). This association has been interpreted as the result of non-
allelic homologous recombination between duplicates. Indeed, there are well-
documented cases of such mechanism. In humans for instance, there is a polymorphic
inversion on chromosome Xq28 that includes the FLNA and EMD loci and that is flanked
by inverted duplicates. It was shown that these inverted duplicates are present in all
placental mammals and that there is a recurrent inversion of the segment between
these duplicates in several mammalian lineages (Caceres et al. 2007). However, some
inversions come from another mechanism (Casals & Navarro 2007, Kehrer-Sawatzki &
Cooper 2008). Human and chimp genomes differ by several chromosomal
rearrangements. One of them is a pericentric inversion in the chromosome 10 of
chimpanzee in the region around the SLCO1B3 gene. A comparison between humans
and chimps revealed that this pericentric inversion produced a duplication found only in
chimps, which suggests that the inversion generated the duplication and not the
contrary (Kehrer-Sawatzki et al. 2005). More recently, a multigenome comparison in
drosophila revealed that 60% of the inversions produced duplications and were formed
by a mechanism called isochromatid model with staggered single-strand breaks (Ranz
et al. 2007). In this mechanism, two pairs of staggered single-strand breaks result in
long 5’-overhangs, which can then be filled in by DNA synthesis. When followed by a
repair pathway called nonhomologous end joining (NHE]J), this results in an inversion
flanked by inverted duplications of the sequences between the paired single-strand
breaks (Ranz et al. 2007).

Both models could explain our results. A Y-specific duplication could have occurred and
then an inversion between the duplicates in agreement with the non-allelic
recombination between duplicates model. The Y inversion itself could have produced
the duplicates as in the isochromatid model with staggered single-strand breaks. We
tend to favour the latter because it is more parcimonious (one event - the inversion —in
the isochromatid model with staggered single-strand breaks instead of two events - a
duplication and an inversion - in the non-allelic recombination between duplicates

model). In Figure 3D, we show a scenario of the formation of strata 4 and 5 consistent

12/34

Inversions and evolution of sex chromosomes

with the isochromatid model with staggered single-strand breaks but in any case, our
results clearly point towards a single inversion event spanning the whole stratum 5 and
another similar event for stratum 4. An important point is that orientation of the
duplicates is fully compatible with two large inversions giving rise to stratum 4 first and
then to stratum 5 (see Figure 3D). Indeed, if we invert stratum 5 back in place on the Y
chromosome, the duplicates for stratum 4 are in inverted orientation. We also
compared the X and Y duplicated sequences found at PAR/stratum 5 and strata 4/5 (see
Methods). The level of divergence between duplicated segments is 30% for
PAR/stratum 5 and 50% for strata 4/5, which is fully consistent with the fact that the
formation of stratum 5 is more recent than the formation of stratum 4. However, the
divergence is clearly higher than the reported divergence for stratum 5 (5%) and
stratum 4 (10-15%) (see Skaletsky et al. 2003, lwase et al. 2003, Ross et al. 2005). This
may be because these estimates of divergence and ours have been obtained by
different methods. In previous work, the estimates mainly come from the comparison of

synonymous sites of coding regions (dg values). Our estimates have been obtained on

X and Y regions that include non-homologous sequences (i.e. DNA repeats and other
inserted/deleted sequences), which decreases the quality of the global alignment and
increases divergence. Nevertheless, our results strongly suggest that there are
footprints of inversions at the recent strata boundaries and that these inversions have
produced the strata.

Evidence for gene conversion between XG copies

A more careful analysis of the divergence pattern between the pair of duplicates
(namely the XG gene) associated with the stratum 5 inversion gave unexpected results.
XG has three copies: the X copy (XG-X) and two Y copies: the one in the PAR (XG-Y1)
and the entire copy in the non-recombining Y hereafter called NRY (XG-Y2). XG-Y1 and a
part of XG-X are in the PAR and are nearly identical. We extracted from ENSEMBL v49
the sequences of XG-X and XG-Y2. We first computed the dy and dg using PAML (Yang

1997, 2007) for the exons of these copies (see Figure 4). Surprisingly, we found very
different results for the part common to XG-X, XG-Y1 and XG-Y2 (hereafter called XG-5’)
and for the other part (found only in XG-X and XG-Y2, hereafter called XG-3’). XG-5’ has

13/34

Inversions and evolution of sex chromosomes

a lower dg value (0.060) than XG-3’(0.091) and XG-5" has a much lower dy/dg ratio
(0.019) than XG-3’ (1.01). The results for XG-3’ are in agreement with XG-Y2 being a

pseudogene (dp/dg ratio of 1) but the lower dg value and the much lower dy/dg ratio

for XG-5' suggests genetic exchanges from the functional XG-X to the non-functional
XG-Y2. This is striking since XG-Y2 is in the NRY and is not expected to recombine. The
analysis of total DNA (including exons and introns) confirmed the results for the exons
only (see Figure 4). We found a higher % of similarity for XG-5" (83.26%) than for XG-3’
(67.32%) when comparing XG-X and XG-Y2. Genetic exchanges from XG-X to XG-Y2 are
not expected. This could have happen by X-Y gene conversion involving XG-X and XG-
Y2 or by Y-Y gene conversion involving XG-Y1 and XG-Y2. We know that Y-Y gene
conversion exists in humans since evidence of strong gene conversion has been found
among Y genes of the same multigene families (Rozen et al. 2003, Bhowmick et al.
2007). The drop in divergence between XG-X and XG-Y2 seems to lie in a region of
about 8 Kb where both copies share more than 95% of identity, which is consistent with

a single very recent event of gene conversion.

These results have important implications for AMEL. The boundary between strata 3
and 4 was thought to lie within AMEL because of a drop of divergence from 30 to 10%
within this gene (Ilwase et al. 2003). But AMELY is not truncated and this was considered
as evidence that there was no inversion affecting AMEL. AMEL was clearly a problem for
the Lahn & Page model of strata formation by Y inversion until it was found that AMELX
and AMELY showed evidence for gene conversion, which could explain the peculiar
divergence pattern of AMEL (Marais & Galtier 2003, Ross et al. 2005). The strata 3/4
boundary has been put between KALIX and TBL1X by Ross et al. (2005) but this
boundary is still debated. Our results on XG suggest that the strata 3/4 boundary could
be in AMEL. An inversion could have formed stratum 3 and produced two copies of
AMEL on the Y chromosome with one copy being complete. The same kind of
configuration as for XG could have existed with a part of AMELX and a truncated AMELY
in the PAR and an entire AMELY in the NRY with possibility of gene conversion between
these copies. This would have produced the divergence pattern that we now observed
when comparing AMELX and AMELY, which resembles that of XG-X and XG-Y2. We
looked for a truncated AMELY by BlastZ search (AMELY against the whole Y
chromosome) and found no other hit than AMELY itself. However, the formation of
stratum 3 is an ancient event and the truncated AMELY, which was made a pseudogene

14/34

Inversions and evolution of sex chromosomes

at that time, may well be no longer recognisable or may have been deleted.

Discussing the case of the ancient human strata

Following Ross et al. (2005), we focused mainly on strata 4 and 5 in the previous
sections. In the first section, we had some markers from stratum 3 but they have been
mainly used to delimit stratum 4, and stratum 3 was not analysed entirely. We only
included two stratum 3 markers as in Ross et al. (2005). In this section, we address the
question whether stratum 3 was formed by a single inversion on the Y chromosome. We
used all the markers available in the literature for stratum 3 plus 3 new markers that
we found when looking for similarities between the X and Y sequences. In total, we had
23 markers (stratum 5: 2, stratum 4: 7+ 1 new, stratum 3: 11 + 2 new) that with the
PAR covered the first 45 Mb of the X (see Table 1). We ran our method on the set of 23
markers. We could still find optimal scenarios consistent with the formation of strata 4
and 5 by Y inversions, which shows that the conclusions obtained with 12 markers
remain unchanged by adding more markers. We could not however find any scenario
consistent with the formation of stratum 3 by a Y inversion (using strata 3/4 boundary
as in Ross et al. 2005).

There are several explanations for that. One is that the strata 3/4 boundary is not well
defined and this may affect the results. When we put the strata 3/4 boundary at AMELX
(by removing the AMEL marker and putting the boundary at its place), the results
remain unchanged. The second possible explanation is that stratum 3 was formed by a
mechanism different from Y inversions. Consistent with this idea, when we analysed
stratum 3 with our method (Lemaitre et al. 2008) but we could find no clear evidence
(no duplications) of large inversions as we found for strata 5 and 4. In Silene latifolia - a
dioecious plant with recently evolved (< 10 mya) sex chromosomes - 3 strata have
already evolved (Nicolas et al. 2005, Bergero et al. 2007). Maps for the X and Y
chromosomes are being developed and preliminary data suggest that stratum 2 may
have been formed by a large paracentric inversion but for strata 1 and 3 the
mechanism is less clear (Bergero et al. 2008). Stratum 3 may have been formed by
translocation in some populations but not all, which suggests that other type of

chromosomal rearrangements than inversion could form strata. However, the only

15/34

Inversions and evolution of sex chromosomes

translocation that has affected stratum 3 seems to be the translocation of the entire
XAR (see Ross et al. 2005) and it is not clear why this would have stopped
recombination at some part of XAR (e.g. stratum 3) and not others (strata 3, 4 and the
current PAR). Moreover, absence of footprints of an inversion spanning stratum 3 may
be simply due to too high level of divergence between X and Y sequences for this

stratum.

A third explanation is that stratum 3 is not just one stratum but several. It is interesting
to notice that more ancient strata get larger and larger. Stratum 1 alone covers the
whole g arm of the X chromosome (Lahn & Page 1999, Skaletsky et al. 2003). This of
course is surprising and may be simply due to the difficulty in identifying distinct strata
when these strata are ancient. Stratum 3 may well include several strata that were
formed successively in a short period of time and that are no longer distinguishable
simply because the levels of divergence between the X and Y sequences in these strata
are very similar. Another line of evidence supporting this hypothesis is that a similar
number of strata has been observed in recent and ancient heteromorphic sex
chromosomes. Ancient sex chromosomes such as that of humans and chicken have five
and three strata respectively (Ross et al. 2005, Nam & Ellegren 2008) and recently
evolved but already differentiated XY such as that of S. /atifolia also have three strata
(Nicolas et al. 2005, Bergero et al. 2007, 2008). This suggests that strata can
accumulate at a fast rate and that in old sex chromosomes old strata may not be
distinguishable.

Interestingly, it is possible to find an optimal scenario consistent with the markers in
stratum 3 up to CASK, which suggests that stratum 3 could comprise a first stratum
from the strata 3/4 boundary (either between KAL1IX and TBL1X or at AMELX) to CASK
and another one including UTX. We know that heterozygotes for an inversion have
recombination suppressed at the inversion. Inhibition of the molecular mechanism of
recombination or selection against gametes with chromosomal rearrangements could
explain this suppression. The suppression is complete for pericentric inversions but for
paracentric inversions, it is stronger at the inversion breakpoints (Navarro et al. 1997,
Andolfatto et al. 2001). For sufficiently large paracentric inversions, recombination is
not suppressed in the middle of the inversion. Indeed, for such inversions, the
probability of two crossovers occurring within the inversions (and avoiding

16/34

Inversions and evolution of sex chromosomes

chromosomal rearrangements) can be high. All this seems to be also true for inversions
affecting sex chromosomes in Drosophila americana (McAllyster 2003, Evans et al.
2007) and the black muntjac (Zhou et al. 2008). Recombination between sex
chromosomes will be suppressed efficiently with relatively small inversions only, which
reinforces the idea that the ancient strata that we have defined based on X-Y
divergence such as stratum 3 are in fact a mosaic of smaller strata that are no longer
distinguishable.

Concluding remarks

Our results strongly suggest that strata 4 and 5 - the most recent strata in humans -
were formed by large Y inversions, which give support to the model proposed by Lahn
& Page that X-Y recombination has been suppressed by Y inversions. For stratum 3 — an
older stratum — we could not find evidence for a large Y inversions. This may be due to
a wrong definition of the strata 3/4 boundary, to the formation of stratum 3 by a
mechanism different from Y inversions or more likely to the existence of several strata
(maybe 2) within stratum 3 or (see previous section). This illustrates the difficulty of
working on an ancient stratum; stratum 3 was formed before the radiation of the
principal placental mammalian orders (Lahn & Page 1999). In such an ancient stratum,
high levels of X-Y divergence, paucity of Y markers, Y deletions in great number and a
multitude of X-Y rearrangements make reliable inferences difficult. The task is even
more difficult for strata 1 and 2. These strata were formed at the very early stages of
the XY evolution probably before the placental/marsupial split (Lahn & Page 1999, for
the age of the human XY see Rens et al. 2007, Veyrunes et al. 2008, Portzebowsky et
al. 2008). These strata are extremely differentiated with only a handful of markers still
detectable on both sex chromosomes and with a massive gene loss on the Y
chromosome (stratum 1: X=588 genes, Y=3 genes, stratum 2: X=151, Y=2 genes, from
ENSEMBL v49 data). Moreover, the X region with strata 1,2 and its homolog in chicken
are rearranged (see Ross et al. 2005) and the absence of outgroup makes almost
impossible the reconstruction of the X-Y rearrangements for these strata. We probably
need to look at more recently evolved sex chromosomes systems such as S. latifolia XY
to obtain more data on the formation of strata, especially the first ones.

17/34

Inversions and evolution of sex chromosomes

Acknowledgements

We thank Laurent Duret, Mark Kirkpatrick, Eduardo Rocha, and David Sankoff for helpful
comments on this ms. This work was partially supported by the ANR (REGLIS project
NTO05-3 45205 and GENOMICRO project ANR-05-JCJC-0139-01). MVDB is supported by
the Programme AlBan, the European Union Programme of High Level Scholarships for
Latin America, scholarship no. EO5D053131BR.

Supplementary Material

1) Classes of equivalence found for the X-Y chromosomes (12 markers analysis)
2) Simulations with different numbers of inversion (d) values and subsequent analysis

18/34

Inversions and evolution of sex chromosomes

Literature cited

Andolfatto P, Depaulis F, Navarro A. Inversion polymorphisms and nucleotide variability
in Drosophila. Genet Res. 2001 Feb;77(1):1-8.

Bachtrog D. The temporal dynamics of processes underlying Y chromosome
degeneration. Genetics. 2008 Jul;179(3):1513-25.

Bergero R, Charlesworth D, Filatov DA, Moore RC. Defining regions and rearrangements
of the Silene latifolia Y chromosome. Genetics. 2008 Apr;178(4):2045-53.

Bergero R, Forrest A, Kamau E, Charlesworth D. (2007) Evolutionary strata on the X
chromosomes of the dioecious plant Silene latifolia: evidence from new sex-linked
genes. Genetics. 75: 1945-54.

Bergeron A., Chauve C., Hartmann T., St-Onge K., “On the properties of sequences of
reversals that sort a signed permutation”. JOBIM 2002, 99-108.

Bhowmick BK, Satta Y, Takahata N. The origin and evolution of human ampliconic gene
families and ampliconic structure. Genome Res. 2007 Apr;17(4):441-50.

Bhutkar A, Schaeffer SW, Russo SM, Xu M, Smith TF, Gelbart WM. Chromosomal
rearrangement inferred from comparisons of twelve Drosophila genomes.
Genetics. 2008 Jul 13.

Braga M. D. V, Sagot M.-F., Scornavacca C. and Tannier E. (2008) Exploring the solution
space of sorting by reversals with experiments and an application to evolution,
Transactions on Computational Biology and Bioinformatics in press.

Caceres M; National Institutes of Health Intramural Sequencing Center Comparative
Sequencing Program, Sullivan RT, Thomas JW. A recurrent inversion on the
eutherian X chromosome. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18571-6.

Carrel L and Willard HF. X-inactivation profile reveals extensive variability in X-linked
gene expression in females. Nature 2005 March 17 ; 434 400-404.

Casals F, Navarro A. Chromosomal evolution: inversions: the chicken or the egg?
Heredity. 2007 Nov;99(5):479-80.

Charlesworth D, Charlesworth B, Marais G. Steps in the evolution of heteromorphic sex
chromosomes. Heredity 2005 95(2):118-28.

Charlesworth D, Charlesworth B. A Model for the Evolution of Dioecy and Gynodioecy.
The American Naturalist, 1978 112 : 975-997.

Evans AL, Mena PA, McAllister BF. Positive selection near an inversion breakpoint on the
neo-X chromosome of Drosophila americana. Genetics. 2007 Nov;177(3):1303-19.

19/34

Inversions and evolution of sex chromosomes

Fischer G, Rocha EP, Brunet F, Vergassola M, Dujon B. Highly variable rates of genome
rearrangements between hemiascomycetous yeast lineages. PLoS Genet. 2006
Mar;2(3):e32.

Handley LJ, Ceplitis H, Ellegren H. (2004) Evolutionary strata on the chicken Z
chromosome: implications for sex chromosome evolution. Genetics. 167: 367-76.

Hannenhalli, S. and Pevzner, P. A. Transforming men into mice (polynomial algorithm for
genomic distance problem), InProceedings of the IEEE 36th Annual Symposium on
Foundations of Computer Science, pages 581-592, 1995.

Iwase M, Satta Y, Hirai Y, Hirai H, Imai H, Takahata N. The amelogenin loci span an
ancient pseudoautosomal boundary in diverse mammalian species. Proc Natl Acad
Sci US A. 2003 Apr 29;100(9):5258-63.

Kehrer-Sawatzki H, Cooper DN. Molecular mechanisms of chromosomal rearrangement
during primate evolution. Chromosome Res. 2008;16(1):41-56.

Kehrer-Sawatzki H, Sandig CA, Goidts V, Hameister H. Breakpoint analysis of the
pericentric inversion between chimpanzee chromosome 10 and the homologous
chromosome 12 in humans. Cytogenet Genome Res. 2005;108(1-3):91-7.

Kirkpatrick M, Barton N. Chromosome inversions, local adaptation and speciation.
Genetics. 2006 May;173(1):419-34.

Lahn BT and Page DC. (1999) Four evolutionary strata on the human X chromosome.
Science 286: 964-967

Lemaitre C, Tannier E, Gautier C, Sagot M-F. (2008) Precise detection of rearrangement
breakpoints in mammalian chromosomes. BMC Bioinformatics 9: 286.

McAllister BF. Sequence differentiation associated with an inversion on the neo-X
chromosome of Drosophila americana. Genetics. 2003 Nov;165(3):1317-28.

Marais G and Galtier N. Sex chromosomes: how X-Y recombination stops. Curr Biol.
2003 Aug 19;13(16):R641-3

Murphy W]J, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, Beever JE,
Chowdhary BP, Galibert F, Gatzke L, Hitte C, Meyers SN, Milan D, Ostrander EA,
Pape G, Parker HG, Raudsepp T, Rogatcheva MB, Schook LB, Skow LC, Welge M,
Womack JE, O'brien SJ, Pevzner PA, Lewin HA. Dynamics of mammalian
chromosome evolution inferred from multispecies comparative maps. Science.
2005 Jul 22;309(5734):613-7.

Nam K, Ellegren H. Scrambled Eggs: The Chicken (Gallus gallus) Z Chromsome Contains
at Least Three Non-linear evolutionary Strata. Genetics. 2008 Sep 14. [Epub ahead

20/34

Inversions and evolution of sex chromosomes

of print]

Navarro A, Betran E, Barbadilla A, Ruiz A. Recombination and gene flux caused by gene
conversion and crossing over in inversion heterokaryotypes. Genetics. 1997
Jun;146(2):695-7009.

Nei M. Linkage modifications and sex difference in recombination. Genetics. 1969
Nov;63(3):681-99.

Nicolas M, Marais G, Hykelova V, Janousek B, Laporte V, Vyskot B, Mouchiroud D,
Negrutiu |, Charlesworth D, Monéger F. (2005) A gradual process of recombination
restriction in the evolutionary history of the sex chromosomes in dioecious plants.
PLoOS Biol. 3: e4.

Potrzebowski L, Vinckenbosch N, Marques AC, Chalmel F, Jégou B, Kaessmann H.
Chromosomal gene movements reflect the recent origin and biology of therian sex
chromosomes. PLoS Biol. 2008 Apr 1;6(4):e80.

Ranz JM, Maurin D, Chan YS, von Grotthuss M, Hillier LW, Roote J, Ashburner M,
Bergman CM. Principles of genome evolution in the Drosophila melanogaster
species group. PLoS Biol. 2007 Jun;5(6):e152.

Rens W, O'Brien PC, Grutzner F, Clarke O, Graphodatskaya D, Tsend-Ayush E, Trifonov
VA, Skelton H, Wallis MC, Johnston S, Veyrunes F, Graves JA, Ferguson-Smith MA.
The multiple sex chromosomes of platypus and echidna are not completely
identical and several share homology with the avian Z. Genome Biol.
2007;8(11):R243.

Rice,P. Longden,l. and Bleasby,A. EMBOSS: The European Molecular Biology Open
Software Suite. Trends in Genetics vol. 16, (6) p. 276--277, 2000.

Ross MT et al. (2005) The DNA sequence of the human X chromosome. Nature 434:
325-337.

Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Page
DC Abundant gene conversion between arms of palindromes in human and ape Y
chromosomes. Nature. 2003 Jun 19;423(6942):873-6.

Sandstedt SA and Tucker PK. (2004) Evolutionary strata on the mouse X chromosome
correspond to strata on the human X chromosome. Genome Res. 14: 267-72.

Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R.C., Haussler, D.,
Miller, W. Human-mouse alignments with BLASTZ. Genome Res, vol. 13, p. 103--
107, 2003.

Siepel A. An algorithm to enumerate sorting reversals for signed permutations. J

21/34

Inversions and evolution of sex chromosomes

Comput Biol 10:575-597, 2003.

Skaletsky H et al. (2003) The male-specific region of the human Y chromosome is a
mosaic of discrete sequence classes. Nature 423: 825-837.

Suyama M, Torrents D, and Bork P (2006). PAL2NAL: robust conversion of protein
sequence alignments into the corresponding codon alignments. Nucleic Acids Res.
34, W609-W612.

Tesler G. GRIMM: genome rearrangements web server. Bioinformatics. 2002
Mar;18(3):492-3.

Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D, Alsop AE, Gratzner F, Deakin JE,
Whittington CM, Schatzkamer K, Kremitzki CL, Graves T, Ferguson-Smith MA,
Warren W, Marshall Graves JA. Bird-like sex chromosomes of platypus imply recent
origin of mammal sex chromosomes. Genome Res. 2008 Jun;18(6):965-73.

Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood.
Comput Appl Biosci. 1997 Oct;13(5):555-6.

Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007
Aug;24(8):1586-91. Epub 2007 May 4.

Yogeeswaran K, Frary A, York TL, Amenta A, Lesser AH, Nasrallah]JB, Tanksley SD,
Nasrallah ME. Comparative genome analyses of Arabidopsis spp.: inferring
chromosomal rearrangement events in the evolutionary history of A. thaliana.
Genome Res. 2005 Apr;15(4):505-15.Zhou Q, Wang J, Huang L, Nie W, Wang J, Liu
Y, Zhao X, Yang F, Wang W. Neo-sex chromosomes in the black muntjac
recapitulate incipient evolution of mammalian sex chromosomes. Genome Biol.
2008;9(6):R98

22/34

Inversions and evolution of sex chromosomes

Figure legends

Figure 1: A possible scenario for the X-Y rearrangements and the evolution of
recent human strata (adapted from Ross et al. 2005). This scenario has been
obtained by GRIMM using 12 markers covering PAR - stratum 5 — stratum 4 and
beginning of stratum 3. PAR = pseudoautosomal region. Strata definitions are from
Ross et al. (2005). See list of markers in Table 1. Inversions that coincide with strata
and that could have formed them are indicated in red. Other inversions are in brown.

Figure 2: Distributions of the number of optimal scenarios consistent with the
human strata 4 and 5 over the total number of optimal scenarios (#
strata_scen/# total_scen) for free and strata-constrained simulated
sequences. Free simulations have been obtained by random inversions (black boxes).
Strata-constrained simulations have been obtained by simulating formation of strata by
inversions (using currently defined strata 3, 4 and 5 for humans) with additional small
inversions occurring within strata after their formation (white boxes). See main text
(Results and Discussion and Methods) for more details. # strata_scen/# total _scen
values for simulated sequences have been obtained using the Braga et al. (2008)
program. The value observed for the true X-Y sequences is indicated by a red arrow.

23/34

Inversions and evolution of sex chromosomes

Figure 3: Analysis of breakpoints at strata and PAR boundaries in humans. A)
Dotplot for the PAR/stratum 5 boundary. This shows the similarities between the X
region at the PAR/stratum 5 boundary with two “broken” regions on the Y. It clearly
shows that the X region is duplicated on the Y (with one duplicate being inverted). Total
length of the region = 45 Kb. B) Dotplot for the strata 4/5 boundary. This shows the
similarities between the X region at the strata 4/5 boundary with two “broken” regions
on the Y. It clearly shows that the X region is duplicated on the Y (both Y duplicates are
in inverted orientation compared to the X homologous region). Total length of the
region = 110 Kb. See main text (Results and Discussion and Methods) for more details.
C) Picture showing the location and orientation of the duplications on the chromosomes
X and Y. On the Y chromosome, stratum 5 is flanked by duplication of the PAR/stratum 5
region of the X (shown in red), which indicates a large inversion spanning the entire
stratum 5. Duplicates of the strata 4/5 region of the X are found at the ends of stratum
5 and stratum 4 (shown in green). This defines a large inversion spanning the whole
stratum 4. Importantly, duplicates are in an orientation consistent with two large
inversions that have formed stratum 4 first and then stratum 5. D) Sketch showing the
scenario with two inversions for the formation of strata 4 and 5 under the isochromatid
model with staggered single-strand breaks (see text). The first inversion reduces the
size of the PAR and forms stratum 4 with two inverted duplicates flanking the inversion.
The second inversion reduces further the size of the PAR and forms stratum 5 with two
inverted duplicates flanking the inversion. Note that duplicates associated with the
formation of stratum 4 are no longer inverted because one of them is involved in the
inversion that has formed stratum 5. Lines with arrows indicate inversions. In C) and D):
Blocks of similarities are indicated by blue boxes and shadows. Black lines indicate

large stretches of non-homologous sequences. Sizes of boxes and lines are not in scale.

Figure 4: Divergence patterns among XG copies. The three copies of XG are shown:
the X copy (XG-X) and two Y copies: the one in the PAR (XG-Y1) and the entire copy in
the NRY (XG-Y2). XG-X and XG-Y2 have been compared. Two regions were defined: XG-

5’ (1-29500) and XG-3’ (29500-63854). dg and dy were estimated using PAML and the

% of similarity for total DNA was obtained using BlastZ (see Material and Methods).

Grey arrows indicate possible events of gene conversion.

24/34

Inversions and evolution of sex chromosomes

Stratum 4 Stratum 3

8 4 H 404 H 40404 0 ol Jikg
0 4 B 404 H JBdBbg il giF i
-E--E-IEDE@IETD
A miag m lealal H L O6L H# f 0 [B |
IZ.CEIIEEICEI-E--E-E
LA G mEg m ol H [5 404 o [B 4
A g
A

Stratum 5

yElmeg miagg @ | @ 404 O | B 4
ymling m jiBjggd # | @ 4048 O [H 4
v [P O (@IED 4z M €N Gl G T 5D G D

Figure 1

25/34

simulated sequences

200 400 600 800

0

Inversions and evolution of sex chromosomes

l ﬂﬂﬂlﬂ

observed value for XY

H free

[0 strata—constrained

l

B
[

0

0.01

0.02 0.03 0.04 0.05 0.06 0.07

strata_scen / # tot_scen

Figure 2

26/34

Inversions and evolution of sex chromosomes

a) PAR / stratum 5 b) Strata 4/5
™ o)
2 : ~ |-
. — \. w ~.
52 '\\‘ 07 — ~ \.\'
= _ ™ - N
® S N~ g
) 1 = @
s 3 2 -
("5 1 \\ ol
g = g N "
o c o o
173 g =
[e] (o]
£ £
s S .
£ o N~ o
© © - -
> K 4 . > N \“\\
N / e
2 o = ~
(\i ’,/ N~ -
el .
- S S~
o ~
| [[[[[| [| [
267 268 269 27 271 366 3.68 3.7 372 3.74

X chromosome (Mb)

X chromosome (Mb)

d)
Y PAR —
X PAR | /’_\
-
b 5~

- e -

Y (s s S
[~ £~
A=

X {PAR & ssﬁ;} ;: —

Figure 3

27/34

Inversions and evolution of sex chromosomes

PAR Stratum 5
XG-X
]
x —I]
y — C Lo
XG-Y1 XG-Y2

XG-5’ XG-3’

dg 0.060 0.091

dy/ds 0.019 1.01

% similarity

total DNA 83.26 67.32
Figure 4

28/34

Inversions and evolution of sex chromosomes

Tables

Table 1: List of markers on X and Y chromosomes in humans in this study.

Marker name?@ X Y X Y Strata Refsd
position | position | . 4arC| orderc
b b
PAR 0- 0- 0 0 PAR |Lahn & Page
2709520 2709520 (1999)
GYG* ARSD* ARSE¥*, 2672359- | 12492110- 1 -6 5 *Lahn, Page
ARSF** ADLICAN** (1) 3346731 | 13139179 (1999)
**Skaletsky
et al. (2003)
PRK (2) 3345018- 7068601- 2 -5 5 Lahn, Page
3848954 7506089 1999
Anonymous 3662755- | 19743211 3 -20 4 This ms
3909738 | -19851471
Anonymous (3) 4110549- | 17583377- 4 19 4 Ross et al.
4490406 18076812 (2005)
Anonymous (4) 4602689- | 16706206- 5 -18 4 Ross et al.
5384111 17570219 (2005)
around NLGN4 (5) 5384848- | 14981290- 6 -15 4 Skaletsky et
6313029 15805945 al. (2003)
Anonymous (6) 6594680- | 16664668- 7 17 4 Ross et al.
6624810 16691008 (2005)
around STS (7) 6625496- | 15807027- 8 16 4 Lahn, Page
7448677 16376778
Anonymous (8) 7449397- | 14794314- 9 14 4 Ross et al.
7646086 14971778 (2005)
around VC (9) 7731889- | 14681748- 10 -13 4 Skaletsky et
7952770 14772569 al. (2003)
around KAL1 (10) 8388775- | 14456224- 11 -12 4 Lahn, Page
8678660 14455780 (1999)
TBL1 (11) 9367582- | 6818075- 12 4 3 Skaletsky et
9694004 7040054 (or 4) € | al. (2003)
APXL 9803943- | 13139984- 13 7 3 Skaletsky et
9836714 13177590 (or 4) € | al. (2003)
Anonymous 9925052- 2935524- 14 2 3 This ms
10026743 | 6736276
(or4)€
AMEL (12) 11221454- | 6756180- 15 -3 3 Lahn, Page
11228802 6804332

29/34

Inversions and evolution of sex chromosomes

(1999)

TMSB4 12893995- | 14259652- 16 11 3 Lahn, Page
12914689 14336452 (1999)

TXNLG 16713573- | 20187740- 17 22 3 Skaletsky et
16773411 | 20234258 al. (2003)

EIF1A 20052557- | 21146999- 18 -23 3 Lahn, Page
20069887 | 21164428 (1999)

ZF 24071318- | 2855296- 19 1 3 Lahn, Page
24144376 | 2922379 (1999)

MAP3 / TAB3 30755480- | 13771944- 20 9 3 This ms
30819301 | 13828537

BCoR 39795364- | 20076630- 21 21 3 Skaletsky et
39917376 | 20184596 al. (2003)

CRSP2P-CASK 40392502- | 13240309- 22 8 3 Lahn, Page
41667660 | 13592325 (1999)

uT 44617701- | 13869035- 23 -10 3 Lahn, Page
44856791 | 14101947 (1999)

a in brackets are indicated marker numbers in Ross et al. (2005).
b positions on X and Y from NCBI version 36, hg18.
C order on the X and Y chromosomes of each marker is indicated.

d reference mentioning the markers for the first time is shown. The 3 new markers that we
found are mentioned.

€ see section on gene conversion between XG copies

30/34

Inversions and evolution of sex chromosomes

Table 2: Analysis of all the optimal scenarios for X-Y rearrangements.

Classes of Curr. 3 Alt. 3 2 1 No

equivalence strata strata strata stratum strata Total
1 420 0 2520 0 7140 10080
2 0 0 0 1260 8820 10080
3 0 0 0 1260 8820 10080

4 0 120 0 0 216 336

5 0 0 0 0 336 336

6 0 0 0 0 840 840

Total 420 120 2520 2520 26172 31752

The 12 markers from Ross et al. (2005) have been used (see also Table 1). Classes of
equivalence group scenarios with the same inversions but in different orders (Braga et al. 2008).
Curr. 3 strata are the strata defined by Ross et al. (2005). Alt. 3 strata are alternative strata with
the following definition: stratum 5 = {1,2,3}, stratum 4 = {4,...,10} and stratum 3 = {11,12}. 2
strata: {1,2} and {3,...,12}. One stratum: {1,...,12}. Sub-totals and grand total are indicated. All
the classes of equivalence are described in the supplementary data.

31/34

Inversions and evolution of sex chromosomes

Table 3: Comparison of free and strata constrained simulations and true X-Y

sequences.
#tot_ #strat_ #strat_scen /| #tot_ | #strat_class | #strat_class/
scen scen f#tot scen class #ttot class
Observed 31752 420 0.0132 6 1 0.167
XY
Free 36100 12 0.0004 173 0.323 0.0019
simulations
Strata- 41700 406 0.0135 191 6.91 0.0544
constrained
simulations
p-values <105 < 10-16 <10-16 <103 < 10-16 < 10-16
free vs.
strata-

constrained

Values are median of the distribution of the different parameters. Parameters are # tot scen

total number of optimal scenarios, # strata_scen = number of scenarios consistent with the 3

currently strata 3,4,5 , # tot_class = total number of classes of equivalence, # strata class =

number of classes of equivalence consistent with the 3 currently strata 3,4,5. Statistical tests

are non-parametric tests (Wilcoxon) for comparing medians of two distributions. Observed

values for XY are from Table 2.

32/34

Inversions and evolution of sex chromosomes

Supplementary material

1) Classes of equivalence found for X-Y chromosomes (12 markers analysis)

Classes nhumber Definition

1 {11,12}{3,....,12}{11}{8}{5,6}{3}{1,2,11,12}{5,7}

2 {1,...,12}{11}{1,2,3}4{4,...,10}{8}{5,6}{1,2,4,...,10}{5,7}

3 {1,...,12}{1,...,11}{3,...,11}{8}{5,6}{3}{1,2,11}{5,7}

4 {11,12}{8}{5,6}{4,...,10,12}{5,7}{1,2,3,12}+{1,...,11}{1,2,4,...,10}
5 {1,...,11}{8}{5,6}{1,2,3,12}+{5,7}{4,...,10,12}{11,12}{1,2,4,...,10}
6 {3,...,11}{4,...,10}{8}{5,6}{3,12}{5,7}{4,...,10,12}{1,2,11,12}

Classes of equivalence group optimal scenarios with the same inversions in different
order. Table shows the 6 classes found for the X-Y data with 12 markers. In this table,
groups of genes in brackets indicate breakpoints where inversions occur.

PS: the marker numbers are as in Ross et al. (2005)

33/34

Inversions and evolution of sex chromosomes

2) Simulations with different numbers of inversion (d) values and subsequent analysis

Distance 4 :

tot _scen |#strata_scen |#strata_scen /| #tot_class | #strata_class | #strata_class

#tot_scen / #tot_class

Free

<imulations 14 0.003 0.0003 1.44 0.002 0.001

Strata-

constrained 12 1.89 0.22 1.58 1 0.71

simulations

p-values <1077 <1016 <1016 <107/ <1016 <1016

1000 simulated sequences for free simulations and 585 for strata-constrained.

Distance 6 :

tot_scen |#strata_scen |#strata scen / |#tot class |#strata class |#strata_class

#tot_scen | #tot_class

Free

<imulations 400 0.007 0.0002 8.5 0.11 0.001

Strata-

constrained 450 16.6 0.05 9.1 1.31 0.22

simulations

p-values <104 < 10-16 <1016 0.012 <1016 < 10-16

1000 simulated sequences for each type of simulations.

Distance 10 :

#tot scen |#strata_scen |#strata_scen/ |#tot class |#strata _class | #strata_class
#tot _scen |/ #tot _class

Free
<imulations 7062279 2337 0.0003 9262 12 0.001
Strata-
constrained | 7750511 25907 0.004 9685 119 0.014
simulations
p-values 0.033 < 10-16 <10-16 0.28 <10-16 < 10-16

400 simulated sequences for each type of simulations.

34/34

L’ESPACE DE SOLUTIONS DU TRI PAR INVERSIONS ET SON UTILISATION DANS L’ANALYSE DE
REARRANGEMENTS DE GENOMES

Resumé: Le calcul de la distance d’inversion et la recherche des séquences optimales d’inversions
pour transformer un génome dans un autre quand les duplications de génes ne sont pas acceptées
sont des outils algorithmiques trés utiles pour ’analyse de scénarios d’évolution réels. Néanmoins,
le nombre de séquences optimales différentes est trés grand. Avec un modéle proposé antérieure-
ment pour regrouper des sous-ensembles de séquences optimales dans des classes d’équivalence,
on a développé un algorithme qui génére une séquence optimale par classe d’équivalence, sans
énumérer toutes les séquences, ce qui permet de réduire la taille de ’ensemble & traiter. On
propose aussi I'utilisation de différentes contraintes biologiques, comme les intervalles communs
détectés initialement et progressivement, pour réduire le nombre de classes, et on montre com-
ment utiliser ces methodes pour analyser des cas réels d’évolution. En particulier, on analyse le
scénario évolutif de la bactérie Rickettsia et des chromosomes sexuels X et Y chez 1’étre humain.
Par rapport aux résultats des études précédentes, qui se sont basées sur une seule séquence op-
timale, on obtient une meilleure caractérisation de ces scénarios évolutifs. Tous les algorithmes
qu’on a développés sont implémentés en java, integrés & BAOBABLUNA, un logiciel qui contient
des outils pour manipuler des génomes et des inversions. Le téléchargement et le tutoriel de
BAOBABLUNA sont disponibles en ligne.

Mots-clés: Evolution ; réarrangements de génomes ; algorithmes ; tri par inversions

EXPLORING THE SOLUTION SPACE OF SORTING BY REVERSALS WHEN ANALYZING GENOME
REARRANGEMENTS

Abstract: Calculating the reversal distance and searching for optimal sequences of reversals
to transform a genome into another when gene duplications are not allowed are useful algorith-
mic tools to analyse real evolutionary scenarios. However, the number of sorting sequences is
usually huge. Using a model previously proposed to group the sorting sequences into classes of
equivalence, we developed an algorithm to direct generate the classes without enumerating all
sequences, reducing thus the size of the set to be handled. We then propose the use of differ-
ent biological constraints, such as the common intervals initially and progressively detected, to
reduce the universe of sequences and classes, and show how to apply these methods to analyze
real cases in evolution. In particular, we analyzed the evolution of the Rickettsia bacterium,
and of the sexual chromosomes X and Y in human. We obtain a better characterization of the
evolutionary scenarios of these genomes, with respect to the results of previous studies, that were
based on a single sorting sequence. All the algorithms developed in this work are implemented,
integrated to BAOBABLUNA, a java framework to deal with genomes and reversals. Download
and tutorial for BAOBABLUNA are available on-line.

Keywords: Evolution ; genome rearrangements ; algorithms ; sorting by reversals

Discipline: Bioinformatique

Intitulé et adresse du laboratoire: Laboratoire de Biométrie et Biologie Evolutive
UMR CNRS 5558 - Batiment Gregor Mendel - Université Claude Bernard Lyon 1
43, boulevard du 11 novembre 1918 - 69622 Villeurbanne cedex - FRANCE

