The solution space of sorting by reversals

Marília D. V. Braga marilia@biomserv.univ-lyon1.fr

> Marie-France Sagot Celine Scornavacca Eric Tannier

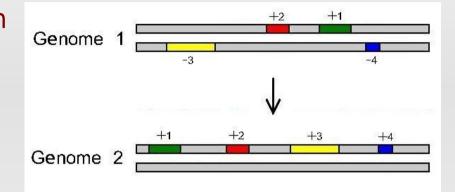
University of Lyon (France)

INRIA / CNRS / Program Alßan

Motivation

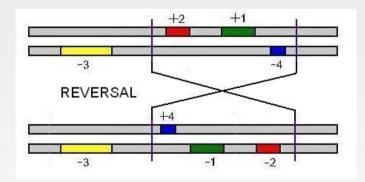
ISBRA 2007 Marília D. V. Braga

Genome rearrangement studies: when comparing the contents of two different genomes, try to identify the mutation events (reversals, insertions, deletions, transpositions...) that have transformed one genome into the other.



Identify all parsimonious scenarios of rearrangement restricted to **reversal**

events (sorting by reversals)



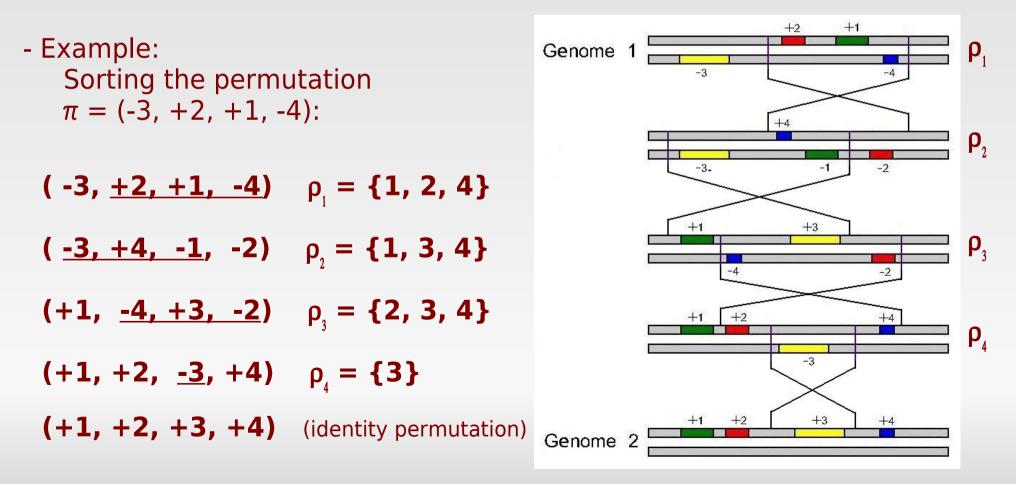
(a **reversal** reverts the order and orientation of the genes in an interval of the genome)

Introduction

ISBRA 2007 Marília D. V. Braga

- A **signed permutation** π represents a genome (each value represents a marker and its orientation; duplications are not allowed)

- Only reversal operations are considered (a **reversal** ρ reverts the order and orientation of the values in an interval of the permutation)



Sorting by reversals (2)

ISBRA 2007 Marília D.V. Braga

 - d(π) is the reversal distance for a permutation π (the minimum number of reversals required to sort π)

- A sequence S of reversals which sorts π is an **optimal solution** for π if $|S| = d(\pi)$.

In the **previous example**, the sorting sequence of reversals $S = \{1, 2, 4\} \{1, 3, 4\} \{2, 3, 4\} \{3\}$ is an **optimal solution** for $\pi = (-3, +2, +1, -4)$

- Given a permutation π , calculating $d(\pi)$ and finding one optimal solution for π can be computed in polynomial time (Hannenhalli and Pevzner, 1995)

- Several other approaches find **one** optimal solution...

- The **number of optimal solutions** for the sorting by reversals problem is usually **huge**

- Some examples:

 $\pi = (-3, +2, +1, -4) \qquad \pi = (-4, +1, -3, +6, -7, -5, +2) \\ \mathbf{d} = \mathbf{4} ; \mathbf{s} = \mathbf{28} \qquad \mathbf{d} = \mathbf{6} ; \mathbf{s} = \mathbf{204}$

 $\pi = (-6, +5, +7, -1, -4, +3, +2) \qquad \pi = (-4, -3, +12, -11, -8, +10, +9, +7, -6, -5, +2, -1) \\ \mathbf{d} = \mathbf{6} ; \mathbf{s} = \mathbf{496} \qquad \qquad \mathbf{d} = \mathbf{8} ; \mathbf{s} = \mathbf{31752}$

 $\pi = (-4, +3, +12, -11, -8, +10, +9, +7, -6, -5, +2, -1)$ d = 9; s = 407 232

 $\pi = (-12, +11, -10, +6, +13, -5, +2, +7, +8, -9, +3, +4, +1)$ d = 10; s = 8 278 540

 $\pi = (-12, +11, -10, -1, +16, -4, -3, +15, -14, +9, -8, -7, -2, -13, +5, -6)$ d = 12; s = 505 634 256

 $\pi = (-12, +11, -10, +6, -5, +13, +2, +7, +8, -9, +14, -15, +3, +4, -16, +1)$ d = 13; s = 40 313 272 766

Introduction

ISBRA 2007 Marília D. V. Braga

Siepel (2003) proposed an algorithm that gives all optimal **next reversals** for a given permutation π .

Example:

For (-3, +2, +1, -4), the possible next reversals are $\{1\}, \{1,2,3\}, \{2\}, \{3\}, \{1,2,4\}, \{4\}$

After aplying $\{1,2,4\}$ to (-3, +2, +1, -4), we obtain (-3, +4, -1, -2), for which the possible next reversals are $\{3\}$, $\{1,3,4\}$

This algorithm allows the **enumeration of all existing optimal solutions** for π .

(but the **number of optimal solutions** for the sorting by reversals problem is usually **huge**)

Introduction

ISBRA 2007 Marília D. V. Braga

Traces (1)

Bergeron et al (2002):

- Many optimal solutions are **equivalent**

 $\{1, 2, 4\} \{1, 3, 4\} \{2, 3, 4\} \{3\} \\ \{1, 2, 4\} \{1, 3, 4\} \{3\} \{2, 3, 4\} \\ \{1, 2, 4\} \{3\} \{1, 3, 4\} \{2, 3, 4\} \\ \{3\} \{1, 2, 4\} \{1, 3, 4\} \{2, 3, 4\}$

 $\pi = (-3, +2, +1, -4)$

- A trace is a set of **optimal solutions** composed by the **same** reversals but in different orders

- The set of all optimal solutions for a permutation π is a union of traces

Finding an element of each trace without enumerating all solutions was stated to be an open problem

Traces (2)

Introduction

ISBRA 2007 Marília D. V. Braga

Two reversals ρ and θ commute if they are disjoint sets or if one is a subset of the other.

Examples:

{1,3,4} and {2,5} commute
{1,3,4} and {3} commute
{1,2,4} and {1,3,4} do not commute

If two reversals ρ and θ commute, then any optimal sequence of reversals containing $\rho\theta$ as a substring is equivalent to the same sequence, replacing $\rho\theta$ by $\theta\rho$

{1, 2, 4} {1, 3, 4} {3} {2, 3, 4} is equivalent to
{1, 2, 4} {3} {1, 3, 4} {2, 3, 4}

A **trace** is a set of **optimal sequences** which are all **equivalent** under the transitive closure of this **commuting relation**.

i-traces and prefixes

ISBRA 2007 Marília D. V. Braga

All **elements** of a trace have the **same number of reversals**. We call **i-trace** a trace which **elements** have *i* **reversals**.

Example of a 4-trace (each element has 4 reversals):

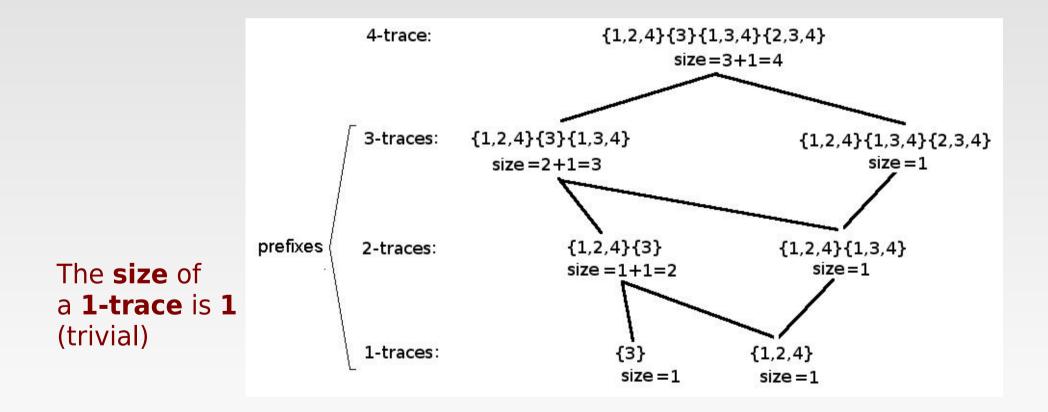
(this **4-trace** has **four** elements; a coincidence!)

The **k-prefixes** of an **i-trace t** are the traces that are formed by sequences which correspond to the **first k reversals** of the elements of **t**.

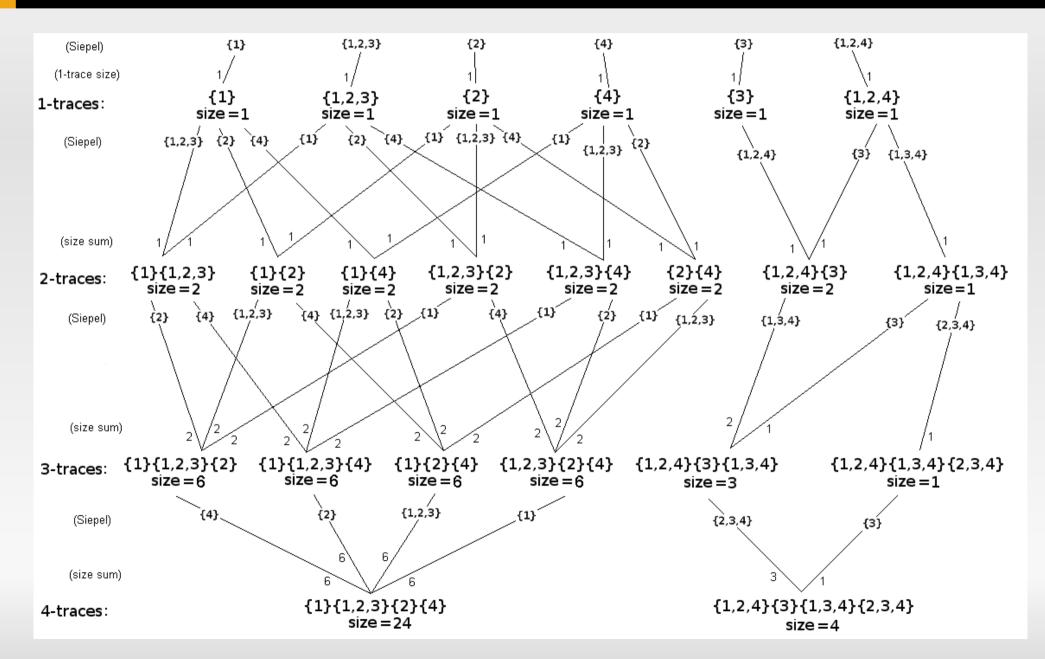
The previous 4-trace has two 3-prefixes (3-traces):

$\{1, 2, 4\} \{1, 3, 4\} \{2, 3, 4\}$	(a 3-trace with only one element)	[The size (number of elements) of the 4-trace
$\{1, 2, 4\} \ \{1, 3, 4\} \ \{3\} \ \{1, 2, 4\} \ \{3\} \ \{1, 3, 4\} \ \{3\} \ \{1, 2, 4\} \ \{1, 3, 4\} \ \{3\} \ \{1, 2, 4\} \ \{1, 3, 4\} \ \}$	(a 3-trace with three elements)	is the sum of the sizes of its 3-prefixes]

The size (number of elements) of an i-trace is the sum of the sizes of its (i-1)-prefixes.



Constructing all the traces The algorithm $\pi = (-3, +2, +1, -4)$ Marília D. V. Braga



Theoretical complexity (1)

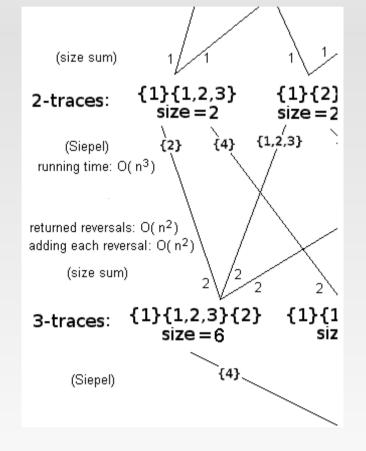
The algorithm

ISBRA 2007 Marília D. V. Braga

- . n = size of the input permutation
- . N = number of final traces

For each partial trace (prefix), we run the algorithm of Siepel, which complexity is O(n^3), and then add each of the O(n^2) returned reversals to the partial trace in O(n^2). Thus, for each partial trace, the additional processing time is O($n^3 + n^2 \cdot n^2$) = O(n^4).

The theoretical complexity depends on the **total number of partial traces**, which are prefixes of final traces.



Marília D. V. Braga

The **number of prefixes** of an i-trace is bounded by $i^{k} = O(n^{k})$, where **k** is the width of the i-trace (Steiner, 1986)

The **width** of a trace t is defined as the **biggest subset** of reversals of t such that **every pair of reversals** in this subset **commutes**.

Example:

```
Trace: {1, 2, 4} {1, 3, 4} {2, 3, 4} {3}
```

Subsets:

```
{ {1, 2, 4}{3} }, size = 2
{ {1, 3, 4}{3} }, size = 2
{ {2, 3, 4}{3} }, size = 2
```

Width = 2

The width of a trace can be calculated in polynomial time (Fulkerson, 1956)

- . n = size of the input permutation
- . N = number of final traces

The **total number of partial traces** (prefixes of final traces) is $\sum_{k=1}^{N} n^{k} = O(N. n^{kmax})$ (kmax is the maximum width of a final trace)

For **each partial trace**, the additional processing time is $O(n^3 + n^2 \cdot n^2) = O(n^4)$

Theoretical complexity: $N \cdot n^{kmax} \cdot n^4 = O(N \cdot n^{kmax+4})$

(For our example, we have n = 4, N = 2 and kmax = 4)

The algorithm has been implemented using the Java Technology* , integrated to the **baobabLuna** framework.

On-line download:

http://biomserv.univ-lyon1.fr/~marilia/baobabLuna.html

baobabLuna is a java framework to deal with permutations - A collection of classes for building breakpoint graphs (the basic structures behind the work on genome rearrangements), performing reversals, calculating reversal distances, sorting permutations.

* java.sun.com

Experimental results

ISBRA 2007 Marília D. V. Braga

Experiences were made in a personal computer with a 1.8GHz CPU and 1GB of RAM

PERMUTATION	# Solutions	# Traces	Enum. solutions	Constr. traces
rat / human chr X n=16 d=10	2 419 750	418	≃10 min	≃10 s
mouse / human chr X n=16 d=10	3 362 310	218	≃12 min	≃10 s
random n=17 d=11	57 019 369	18 255	≃ 4 h	≃ 5 min
random n=18 d=12	327 905 046	34 317	≃ 24 h	≃18 min
human chr X / chr Y n=30 d=12	207 600 628	115 512	> 24 h	≃ 28 min

Both algorithms have been implemented in baobabLuna framework: http://biomserv.univ-lyon1.fr/~marilia/baobabLuna.html Our algorithm **gives a representation of all solutions** of sorting signed permutations by reversals, **without enumerating all solutions**

The **solution space is dramatically reduced** when dealing with traces

An **implementation** of this algorithm is available **on-line**, integrated to the **baobabLuna** framework.

But unfortunately...

The **solution space** represented by traces **is still too big** for direct human interpretation

The **algorithm implementation is limited** to permutations with reversal distance bounded by 20

Thank you !

References:

Hannenhalli S. and Pevzner P., Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals), In Proceedings of the 27th Annual ACM-SIAM Symposium on the Theory of Computing, pages 178-189, 1995.

Hannenhalli, S. and Pevzner, P., Transforming men into mice (polynomial algorithm for genomic distance problem), In Proceedings of the IEEE 36th Annual Symposium on Foundations of Computer Science, pages 581-592, 1995.

Bergeron A., Chauve C., Hartmann T., St-Onge K., On the properties of sequences of reversals that sort a signed permutation. JOBIM 2002, 99-108.

Siepel A. An algorithm to enumerate sorting reversals for signed permutations. J Comput Biol 10:575-597, 2003.

Steiner G., An algorithm to generate the ideals of a partial order. Operations Research Letters, 5(6):317-320, 1986.

Fulkerson D.R., Note on Dilworth's decomposition theorem for partially ordered sets, Proc. Amer. Math. Soc. 7 (1956), 701-702