
The  so lu t ion  space  
o f  so r t ing  by  reversa l s

Marília D. V. Braga

marilia@biomserv.univ-lyon1.fr

Marie-France Sagot
Celine Scornavacca

Eric Tannier

University of Lyon (France)

INRIA / CNRS / Program Alßan

I S B R A  2 0 0 7

mailto:marilia@biomserv.univ-lyon1.fr


M o t i v a t i o n I S B R A  2 0 0 7
M a r í l i a  D .  V .  B r a g a

Genome rearrangement studies: when 
comparing the contents of two 
different genomes, try to identify the 
mutation events (reversals, insertions, 
deletions, transpositions...) that have 
transformed one genome into the 
other.

Identify all parsimonious scenarios 
of rearrangement restricted to reversal 
events (sorting by reversals)

(a reversal  reverts the order 
and orientation of the genes in 
an interval of the genome)
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- A signed permutation  π  represents a genome (each value 
represents a marker and its orientation; duplications are not allowed)

- Only reversal operations are considered (a reversal  ρ  reverts the 
order and orientation of the values in an interval of the permutation)

- Example: 
     Sorting the permutation  
     π = (-3, +2, +1, -4):

( -3, +2, +1,  -4)    ρ
1
 = {1, 2, 4}

( -3, +4,  -1,  -2)    ρ
2
 = {1, 3, 4}

(+1,  -4, +3,  -2)    ρ
3
 = {2, 3, 4}

(+1, +2,  -3, +4)    ρ
4
 = {3}

(+1, +2, +3, +4)   (identity permutation)

ρ
1

ρ
2

ρ
3

ρ
4
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- d(π) is the reversal distance for a permutation π 
  (the minimum number of reversals required to sort π)

- A sequence S of reversals which sorts  π  is an optimal solution for  π   
if  |S| = d(π). 

In the previous example, the sorting sequence of reversals  
      S = {1, 2, 4} {1, 3, 4} {2, 3, 4} {3} 
       is an optimal solution for  π = (-3, +2, +1, -4) 

- Given a permutation  π, calculating d(π) and finding one optimal 
solution for  π  can be computed in polynomial time (Hannenhalli and 
Pevzner, 1995)

- Several other approaches find one optimal solution...
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- The number of optimal solutions for the sorting by reversals 
problem is usually huge

- Some examples:

π = (-3, +2, +1, -4)  
d = 4 ; s = 28

π = (-6, +5, +7, -1, -4, +3, +2) 
d = 6 ; s = 496

π = (-4, +1, -3, +6, -7, -5, +2) 
d = 6 ; s = 204

π = (-4, -3, +12, -11, -8, +10, +9, +7, -6, -5, +2, -1) 
d = 8 ; s = 31 752

π = (-4, +3, +12, -11, -8, +10, +9, +7, -6, -5, +2, -1)
d = 9 ; s = 407 232

π = (-12, +11, -10, +6, +13, -5, +2, +7, +8, -9, +3, +4, +1)
d = 10 ; s = 8 278 540

π = (-12, +11, -10, -1, +16, -4, -3, +15, -14, +9, -8, -7, -2, -13, +5, -6)
d = 12 ; s = 505 634 256

π = (-12, +11, -10, +6, -5, +13, +2, +7, +8, -9, +14, -15, +3, +4, -16, +1)
d = 13 ; s = 40 313 272 766
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Siepel (2003) proposed an algorithm that gives all optimal 
next reversals for a given permutation π.

Example:

For (-3, +2, +1, -4), the possible next reversals are 
                    {1}, {1,2,3}, {2}, {3}, {1,2,4}, {4}

After aplying {1,2,4} to (-3, +2, +1, -4), we obtain (-3, +4, -1, -2),
                    for which the possible next reversals are {3}, {1,3,4}

This algorithm allows the enumeration of all existing optimal 
solutions for π. 

(but the number of optimal solutions for the sorting by reversals 
problem is usually huge)
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Bergeron et al (2002):

 - Many optimal solutions are equivalent

{1, 2, 4} {1, 3, 4} {2, 3, 4} {3}
{1, 2, 4} {1, 3, 4} {3} {2, 3, 4}
{1, 2, 4} {3} {1, 3, 4} {2, 3, 4}
{3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

       π = (-3, +2, +1, -4)

- A trace is a set of optimal solutions composed by the same 
reversals but in different orders

- The set of all optimal solutions for a permutation  π  is a union 
of traces 

Finding an element of each trace without enumerating all 
solutions was stated to be an open problem 
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Two reversals  ρ  and  θ  commute if they
  
are disjoint sets or if one 

is a subset of the other. 

Examples: 
{1,3,4} and {2,5} commute
{1,3,4} and {3} commute
{1,2,4} and {1,3,4} do not commute

If two reversals  ρ  and  θ  commute, then any optimal sequence of 
reversals containing  ρθ  as a substring is equivalent to the same 
sequence, replacing  ρθ  by  θρ  

{1, 2, 4} {1, 3, 4} {3} {2, 3, 4}  is equivalent to
{1, 2, 4} {3} {1, 3, 4} {2, 3, 4}

A trace is a set of optimal sequences which are all equivalent 
under the transitive closure of this commuting relation. 
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All elements of a trace have the same number of reversals. 
We call i-trace a trace which elements have  i  reversals.

Example of a 4-trace (each element has 4 reversals):

{1, 2, 4} {1, 3, 4} {2, 3, 4} {3}
{1, 2, 4} {1, 3, 4} {3} {2, 3, 4}     (this 4-trace has four elements;

{1, 2, 4} {3} {1, 3, 4} {2, 3, 4}       a coincidence!)
{3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

The k-prefixes of an i-trace  t  are the traces that are formed by sequences 
which correspond to the first  k  reversals of the elements of  t.

The previous 4-trace has two 3-prefixes (3-traces):

{1, 2, 4} {1, 3, 4} {2, 3, 4}  (a 3-trace with            [ The size (number of 
                                                    only one element)        elements) of the 4-trace

{1, 2, 4} {1, 3, 4} {3}                                         is the sum of the sizes

{1, 2, 4} {3} {1, 3, 4}          (a 3-trace with              of its 3-prefixes ]
{3} {1, 2, 4} {1, 3, 4}           three elements)           
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The size of 
a 1-trace is 1
(trivial) 

The size (number of elements) of an i-trace is the sum 
of the sizes of its (i-1)-prefixes.
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. n = size of the input permutation

. N = number of final traces

For each partial trace (prefix), we run the 

algorithm of Siepel, which complexity is 

O( n 3 ), and then add each of the O( n 2  ) 

returned reversals to the partial trace in O( n 2  ). 

Thus, for each partial trace, the additional 

processing time is O( n 3  + n 2  . n 2  ) = O( n 4  ).

 

The theoretical complexity depends on the total 

number of partial traces, which are prefixes of 

final traces.
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The number of prefixes of an i-trace is bounded by i k  = O(n k ), 
where k is the width of the i-trace (Steiner, 1986)

The width of a trace  t  is defined as the biggest subset of reversals 
of  t  such that every pair of reversals in this subset commutes.

Example: 

        Trace: {1, 2, 4}{1, 3, 4}{2, 3, 4}{3}

        Subsets: 
                       { {1, 2, 4}{3} }, size = 2 
                       { {1, 3, 4}{3} }, size = 2 
                       { {2, 3, 4}{3} }, size = 2

        Width = 2

The width of a trace can be calculated in polynomial time (Fulkerson, 1956)
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. n = size of the input permutation

. N = number of final traces

The total number of partial traces (prefixes of final traces) 

is ∑
1
N  n k = O(N. n kmax ) (kmax is the maximum width of a final trace)

For each partial trace, the additional processing time is 

O( n 3  + n 2  . n 2  ) = O( n 4  )

 

Theoretical complexity: N . n kmax  . n 4  = O( N. n kmax + 4 )

(For our example, we have n = 4, N = 2 and kmax = 4)
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The algorithm has been implemented using the Java Technology* , 

integrated to the baobabLuna framework. 

On-line download:

http://biomserv.univ-lyon1.fr/~marilia/baobabLuna.html

baobabLuna is a java framework to deal with permutations - A collection of classes 

for building breakpoint graphs (the basic structures behind the work on genome 

rearrangements), performing reversals, calculating reversal distances, sorting 

permutations.  

* java.sun.com
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Both algorithms have been implemented in baobabLuna framework:

http://biomserv.univ-lyon1.fr/~marilia/baobabLuna.html

Experiences were made in a personal computer with a 1.8GHz CPU and 1GB of RAM
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Our algorithm gives a representation of all solutions of sorting signed 
permutations by reversals, without enumerating all solutions

The solution space is dramatically reduced when dealing with traces

An implementation of this algorithm is available on-line, integrated to 
the baobabLuna framework.

But unfortunately...

 The solution space represented by traces is still too big for direct 
human interpretation

 The algorithm implementation is limited to permutations with 
reversal distance bounded by 20 
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Thank you !
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