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Sorting a (k)-path, or a (k+1)-path 
or a (k+2)-cycle :
➔ needs  d = k/2  operations 
➔ in  (d+1)(d-1) different ways

(k  is even)

(d1+d2+ ··· + dn)! 
     d1!d2! ... dn!

 × (d1+1)(d1-1) × (d2+1)(d2-1) × ··· × (dn+1)(dn-1)

All DCJ sorting scenarios obtained by combining subsequences sorting
the  n  components independently: 
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