

On Sorting Genomes with DCJ and Indels

Marília D. V. Braga

AG Genome Informatics - Bielefeld University

RECOMB-CG 2010

This work is an extension of **Genomic Distance with DCJ and Indels** (M. D. V. Braga, E. Willing and J. Stoye), presented at *WABI*, 2010.

Overview

- 2 Sorting with DCJs and indels Accumulating runs Sorting one component individually Recombinations of two components
- **3** Sorting with minimum number of DCJs
- Group runs with recombinations
- 5 Experiment and Discussion

Overview

- 2 Sorting with DCJs and indels Accumulating runs Sorting one component individually Recombinations of two components
- 3 Sorting with minimum number of DCJs
- 4 Sorting with minimum number of indels Group runs with recombinations
- 5 Experiment and Discussion

DCJ, Adjacency Graph, Indels

Marília Braga

DCJ, Adjacency Graph, Indels

Marília Braga

DCJ, Adjacency Graph, Indels

Sorting with DCJ and Indels

Marília Braga

DCJ, Adjacency Graph, Indels

Marília Braga

DCJ, Adjacency Graph, Indels

Marília Braga

DCJ, Adjacency Graph, Indels

Marília Braga

DCJ, Adjacency Graph, Indels

Marília Braga

The double cut and join model

(Traditional) DCJ [Yancopoulos et al. 2005, Bergeron et al. 2006]:

- cuts the genome twice and rejoins loose ends
- represents most genome rearrangement operations (same gene content, no duplications)

DCJ with indels [Yancopoulos et al. 2008]:

- allows DCJ operations, insertions and deletions (indels)
- DCJ-indel distance can be computed in linear time [WABI 2010]

- marker: piece of DNA that has an orientation
- G = small genome of A and B: set of markers that occur once in A and once in B (no duplications)
- ▶ a marker $g \in G$ has two extremities: head (g^h) and tail (g^t)
- A and B: sets of unique markers of A resp. B
- G-adjacency: adjacency of markers from G (with *labels* from A or B)

- marker: piece of DNA that has an orientation
- G = small genome of A and B: set of markers that occur once in A and once in B (no duplications)
- ▶ a marker $g \in G$ has two extremities: head (g^h) and tail (g^t)
- A and B: sets of unique markers of A resp. B
- G-adjacency: adjacency of markers from G (with *labels* from A or B)

- marker: piece of DNA that has an orientation
- G = small genome of A and B: set of markers that occur once in A and once in B (no duplications)
- ▶ a marker $g \in G$ has two extremities: head (g^h) and tail (g^t)
- A and B: sets of unique markers of A resp. B
- G-adjacency: adjacency of markers from G (with *labels* from A or B)

- marker: piece of DNA that has an orientation
- G = small genome of A and B: set of markers that occur once in A and once in B (no duplications)
- ▶ a marker $g \in G$ has two extremities: head (g^h) and tail (g^t)
- A and B: sets of unique markers of A resp. B
- ▶ *G-adjacency:* adjacency of markers from *G* (with *labels* from *A* or *B*)

The adjacency graph with $\operatorname{\mathcal{G}-adjacencies}$

The adjacency graph AG(A, B) for genomes A and B:

Genome A has four unique markers (w, x, y and z).

The adjacency graph with $\operatorname{\mathcal{G}-adjacencies}$

The adjacency graph AG(A, B) for genomes A and B:

Genome A has four unique markers (w, x, y and z).

The adjacency graph with $\operatorname{\mathcal{G}-adjacencies}$

The adjacency graph AG(A, B) for genomes A and B:

Genome A has four unique markers (w, x, y and z).

The adjacency graph with $\operatorname{\mathcal{G}-adjacencies}$

The adjacency graph AG(A, B) for genomes A and B:

Components of AG(A, B): 1 cycle, 2 AB-paths and 2 AA-paths

The adjacency graph with $\operatorname{\mathcal{G}-adjacencies}$

The adjacency graph AG(A, B) for genomes A and B:

Components of AG(A, B): 1 cycle, 2 AB-paths and 2 AA-paths

Minimum number of DCJs necessary to sort *A* into *B* (ignoring indels): $d_{\text{DCJ}}(A, B) = |\mathcal{G}| - (c + \frac{b}{2})$, where c = # cycles, b = # AB-paths [Bergeron *et al.* 2006]

The adjacency graph with $\operatorname{\mathcal{G}-adjacencies}$

The adjacency graph AG(A, B) for genomes A and B:

Components of AG(A, B): 1 cycle, 2 AB-paths and 2 AA-paths; $d_{DCJ} = 5 - 1 - 2/2 = 3$

Minimum number of DCJs necessary to sort *A* into *B* (ignoring indels): $d_{\text{DCJ}}(A, B) = |\mathcal{G}| - (c + \frac{b}{2})$, where c = # cycles, b = # AB-paths [Bergeron *et al.* 2006]

Overview

- Sorting with DCJs and indels Accumulating runs Sorting one component individually Recombinations of two components
- 3 Sorting with minimum number of DCJs
- 4 Sorting with minimum number of indels Group runs with recombinations
- 5 Experiment and Discussion

Sorting with DCJs and indels

Saving indel operations

3 steps (trivial)

2 steps

Sorting with DCJs and indels

Saving indel operations

3 steps (trivial)

2 steps

Types of DCJ operation:

DCJ	effect on AG(A, B)	weight
optimal	increase c or b	0
neutral	c and b unchanged	+1
counter-optimal	decrease c or b	+2

The optimal sorting scenarios can have different compositions with respect to the number of DCJ and indel operations.

Sorting with DCJs and indels

Accumulating runs

An optimal DCJ accumulates labels in a single vertex:

Sorting with DCJs and indels

Accumulating runs

Optimal DCJs accumulate the labels of one run in a single G-adjacency \Rightarrow only 1 indel per run is necessary

Marília Braga

Sorting one component individually

A DCJ can merge at most two $\mathcal A\text{-runs}$ and two $\mathcal B\text{-runs}$:

Sorting one component individually

Ignoring indels (labels), it is possible to sort a component individually with optimal DCJs only: d(C) = number of DCJs required to sort *C*

Indel-potential of a component C [WABI 2010

Minimum number of runs obtained by sorting *C* with **optimal** DCJs:

$$\lambda(C) = \left\lceil \frac{\Lambda(C) + 1}{2} \right\rceil$$

Sorting one component individually

5 runs 1 + 2 runs

Ignoring indels (labels), it is possible to sort a component individually with optimal DCJs only: d(C) = number of DCJs required to sort C

Indel-potential of a component C [WABI 2010

Minimum number of runs obtained by sorting *C* with **optimal** DCJs:

$$\lambda(C) = \left\lceil \frac{\Lambda(C) + 1}{2} \right\rceil$$

Sorting one component individually

Ignoring indels (labels), it is possible to sort a component individually with optimal DCJs only: d(C) = number of DCJs required to sort *C*

Indel-potential of a component C [WABI 2010

Minimum number of runs obtained by sorting C with optimal DCJs:

$$\lambda(C) = \left\lceil \frac{\Lambda(C) + 1}{2} \right\rceil$$

A component C can be sorted with d(C) DCJs $+\lambda(C)$ indels.

Sorting one component individually

Neutral DCJs in components with $\lambda \ge 3$ save one indel:

Sorting one component individually

Neutral DCJs in components with $\lambda \ge 3$ save one indel:

$$\bigwedge_{\substack{\ell_2 \\ \ell_2 \\ \Lambda = 7; \ \lambda = 4}}^{\ell_1} \bigvee_{\substack{\ell_6 \\ \ell_6 \\ \Lambda = 5; \ \lambda = 3}}^{\ell_1} \bigvee_{\substack{\ell_2 \\ \ell_2 \\ \ell_4 \\ \Lambda = 5; \ \lambda = 3}}^{\ell_2} \bigvee_{\substack{\ell_6 \\ \ell_6 \\ \ell_2 \\ \ell_4 \\ \ell_6 \\ \Lambda = 5; \ \lambda = 3}}^{\ell_2} \xrightarrow{\ell_2} \bigvee_{\substack{\ell_6 \\ \ell_6 \\ \ell_6 \\ \Lambda = 5; \ \lambda = 3}}^{\ell_2} \bigvee_{\substack{\ell_6 \\ \ell_6 \\ \ell_6 \\ \Lambda = 5; \ \lambda = 3}}^{\ell_2} \bigvee_{\substack{\ell_6 \\ \ell_6 \\ \ell_6 \\ \Lambda = 5; \ \lambda = 3}}^{\ell_2} \bigvee_{\substack{\ell_6 \\ \ell_6 \\ \ell_6 \\ \Lambda = 5; \ \lambda = 3}}^{\ell_2} \bigvee_{\substack{\ell_6 \\ \ell_6 \\ \ell_6 \\ \Lambda = 5; \ \lambda = 3}}^{\ell_2} \bigvee_{\substack{\ell_6 \\ \ell_6 \\ \ell_6 \\ \Lambda = 5; \ \lambda = 3}}^{\ell_2} \bigvee_{\substack{\ell_6 \\ \ell_6 \\ \ell_6 \\ \Lambda = 5; \ \lambda = 3}}^{\ell_2} \bigvee_{\substack{\ell_6 \\ \ell_6 \\ \ell_6 \\ \Lambda = 5; \ \lambda = 3}}^{\ell_2} \bigvee_{\substack{\ell_6 \\ \ell_6 \\ \ell_6 \\ \ell_6 \\ \Lambda = 5; \ \lambda = 3}}^{\ell_2} \bigvee_{\substack{\ell_6 \\ \ell_6 \\ \ell_6 \\ \ell_6 \\ \Lambda = 5; \ \lambda = 3}}^{\ell_2} \bigvee_{\substack{\ell_6 \\ \ell_6 \\ \ell_$$

Sorting one component individually

Neutral DCJs in components with $\lambda \ge 3$ save one indel:

$$\underbrace{\ell_{2}}_{\ell_{2}} \underbrace{\ell_{3}}_{\ell_{4}} \underbrace{\ell_{5}}_{\ell_{6}} \xrightarrow{\ell_{7}} \rightarrow \underbrace{\ell_{1}\overline{\ell_{3}}}_{\ell_{2}} \underbrace{\ell_{4}}_{\ell_{6}} \underbrace{\ell_{6}}_{\ell_{2}} \xrightarrow{\ell_{7}} \underbrace{\ell_{1}\overline{\ell_{3}}\overline{\ell_{5}}}_{\ell_{4}} \underbrace{\ell_{2}}_{\ell_{6}} \underbrace{\ell_{7}}_{\ell_{6}} \xrightarrow{\ell_{7}}_{\ell_{4}} \underbrace{\ell_{2}}_{\ell_{6}} \underbrace{\ell_{6}}_{\ell_{7}} \xrightarrow{\ell_{7}}_{\ell_{1}} \underbrace{\ell_{1}\overline{\ell_{3}}\overline{\ell_{5}}}_{\Lambda = 3; \lambda = 2} \underbrace{\ell_{1}\overline{\ell_{3}}}_{\Lambda = 3; \lambda = 2} \underbrace{\ell_{1}\overline{\ell_{2}}}_{\Lambda = 4} \underbrace{\ell_{1}\overline{\ell_{3}}}_{\Lambda =$$

Sorting one component individually

Sorting one component individually

Neutral DCJs in components with $\lambda \ge 3$ save one indel:

A component *C* can be sorted with $d(C) + \lambda(C)$ operations:

DCJs	indels	
d(C)	$\lambda(C)$	(min DCJs)
d(C) + 1	$\lambda(C) - 1$	
d(C) + 2	$\lambda(C) - 2$	
•	:	
$d(C) + \lambda(C) - 2$	2	(min indels)

Sorting with DCJs and indels

Sorting with DCJs and indels

Sorting with DCJs and indels

Recombination of two components

Change in the DCJ-indel distance: $\Delta d = \Delta d_{DCJ} + \Delta \lambda$

Sorting with DCJs and indels

Recombination of two components

Change in the DCJ-indel distance: $\Delta d = \Delta d_{DCJ} + \Delta \lambda$

Sorting with DCJs and indels

Recombination of two components

Change in the DCJ-indel distance: $\Delta d = \Delta d_{DCJ} + \Delta \lambda$

 $\Delta d = +1 - 2 = -1$

A recombination saves	$\Delta d_{\rm DCJ}$		$\Delta\lambda$		Δd
at most 2 indels	optimal	0	- 2	=	-2
	optimal	0	- 1	=	-1
Possible ways to achieve $\Delta d \leq -1$:	neutral	+1	- 2	=	-1

A recombination saves	$\Delta d_{\rm DCJ}$		$\Delta \lambda$		Δd
at most 2 indels	optimal	0	- 2	=	-2
	optimal	0	- 1	=	-1
Possible ways to achieve $\Delta d \leq -1$:	neutral	+1	- 2	=	-1

Considering all components of AG(*A*, *B*), find a sequence of recombinations *S* such that the **weight** $w(S) = \sum_{\rho \in S} \Delta d(\rho)$ is minimum: solved in linear time [WABI 2010]

A recombination saves	$\Delta d_{\rm DCJ}$		$\Delta\lambda$	$\Delta\lambda$	
at most 2 indels	optimal	0	- 2	=	-2
	optimal	0	- 1	=	-1
Possible ways to achieve $\Delta d \leq -1$:	neutral	+1	- 2	=	-1

Considering all components of AG(*A*, *B*), find a sequence of recombinations *S* such that the **weight** $w(S) = \sum_{\rho \in S} \Delta d(\rho)$ is minimum: solved in linear time [WABI 2010]

Sorting with minimum number of DCJs

Overview

- DCJ, Adjacency Graph, Indels
- 2 Sorting with DCJs and indels Accumulating runs Sorting one component individually Recombinations of two components
- **3** Sorting with minimum number of DCJs
- 4 Sorting with minimum number of indels Group runs with recombinations
- 5 Experiment and Discussion

Sorting with minimum number of DCJs

Algorithm 1: Sorting genome A into B with minimum number of DCJs

- 1. Apply all recombinations in *S*.
- **2.** For each component $C \in AG(A, B)$:
 - **2.1** Split *C* with **optimal** DCJs (that have $\Delta \lambda = 0$) until only components that have at most 2 runs are obtained and the total number of runs in all new components is equal to $\lambda(C)$.
 - **2.2** Accumulate all runs in the smaller components derived from *C* with **optimal** DCJ operations (that have $\Delta \lambda = 0$).
 - **2.3** Apply **optimal** DCJ operations (that have $\Delta \lambda = 0$) in the smaller components derived from *C* until only DCJ-sorted components exist.
 - **2.4 Delete/insert** all runs in the DCJ-sorted components derived from *C*.

Overview

- DCJ, Adjacency Graph, Indels
- 2 Sorting with DCJs and indels Accumulating runs Sorting one component individually Recombinations of two components
- 3 Sorting with minimum number of DCJs
- Group runs with recombinations
- 5 Experiment and Discussion

Group runs with recombinations

Neutral operations in components with $\lambda \geq$ 3 saves one indel

 \rightarrow Grouping runs in one component first is good!

Group runs with recombinations

Neutral operations in components with $\lambda \ge 3$ saves one indel \rightarrow Grouping runs in one component first is good!

Group runs with recombinations

Neutral operations in components with $\lambda \ge 3$ saves one indel \rightarrow Grouping runs in one component first is good!

Group runs with recombinations

Neutral operations in components with $\lambda \ge 3$ saves one indel \rightarrow Grouping runs in one component first is good!

Algorithm 2: Sorting genome *A* into *B* with minimum number of indels

- 1. Apply all recombinations in *S*.
- 2. (*) Group runs of two components in one component using **counter-optimal** recombinations with $\Delta \lambda = -2$, **neutral** recombinations with $\Delta \lambda = -1$ and **optimal** recombinations with $\Delta \lambda = 0$.

[After this step, there is at most one component with 2 or more runs; the others have at most one run.]

- **3.** For each component $C \in AG(A, B)$:
 - **3.1** (*) While $\lambda(C) \geq 3$, apply a **neutral** DCJ on *C* with $\Delta \lambda = -1$.
 - **3.2** If $\Lambda(C) = 3$ (*C* is a path), merge the last and the first runs of *C* extracting a cycle with all runs (**optimal** DCJ with $\Delta \lambda = 0$).
 - **3.3** Accumulate all runs in the smaller components derived from *C* with **optimal** DCJ operations that have $\Delta \lambda = 0$.
 - **3.4** Apply **optimal** DCJ operations in the smaller components derived from *C* until only DCJ-sorted components exist (these DCJs have $\Delta \lambda = 0$).
 - **3.5 Delete/insert** all runs in the DCJ-sorted components derived from *C*.

Experiment and Discussion

Overview

- DCJ, Adjacency Graph, Indels
- 2 Sorting with DCJs and indels Accumulating runs Sorting one component individually Recombinations of two components
- **3** Sorting with minimum number of DCJs
- 4 Sorting with minimum number of indels Group runs with recombinations
- **5** Experiment and Discussion

Experiment and Discussion

Comparing species of Rickettsia

Data from Blanc et al. PLoS Genet. 2007

Experiment and Discussion

Summary: Sorting with DCJs and indels

- Minimizing number of DCJs
- Minimizing number of indels

Experiment and Discussion

Summary: Sorting with DCJs and indels

- Minimizing number of DCJs
- Minimizing number of indels

Future work

- Study the whole space of solutions of the problem
- Incoporporate substitutions in the model?

Acknowledgments

- Eyla Willing
- Jens Stoye
- Sophia Yancopoulos

Acknowledgments

- Eyla Willing
- Jens Stoye
- Sophia Yancopoulos

Thank you for your attention!

References

- A. Bergeron, J. Mixtacki and J. Stoye. A unifying view of genome rearrangements. In Proceedings of WABI, 2006.
- M. D. V. Braga and J. Stoye. The solution space of sorting by DCJ. To appear in Journal of Computational Biology, 2010.
- M. D. V. Braga, E. Willing and J. Stoye. Genomic distance with DCJ and indels. In Proceedings of WABI, 2010.
- S. Yancopoulos and R. Friedberg. Sorting Genomes with Insertions, Deletions and Duplications by DCJ. In Proceedings of *RECOMB-CG*, 2008.
- S. Yancopoulos, O. Attie and R. Friedberg. Efficient sorting of genomic permutations by translocation, inversion and block interchange. *Bioinformatics*, 2005.