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A Unified Approach for Reconstructing Ancient
Gene Clusters
Jens Stoye and Roland Wittler

Abstract—The order of genes in genomes provides extensive information. In comparative genomics, differences or similarities of
gene orders are determined to predict functional relations of genes or phylogenetic relations of genomes. For this purpose, various
combinatorial models can be used to identify gene clusters — groups of genes that are co-located in a set of genomes.
We introduce a unified approach to model gene clusters and define the problem of labeling the inner nodes of a given phylogenetic tree
with sets of gene clusters. Our optimization criterion in this context combines two properties: parsimony, i.e. the number of gains and
losses of gene clusters has to be minimal, and consistency, i.e. for each ancestral node, there must exist at least one potential gene
order that contains all the reconstructed clusters.
We present and evaluate an exact algorithm to solve this problem. Despite its exponential worst-case time complexity, our method is
suitable even for large scale data. We show the effectiveness and efficiency on both simulated and real data.

Index Terms—comparative genomics, gene order, gene cluster, gene cluster reconstruction, phylogeny, parsimony, consistency
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1 INTRODUCTION

T HE exploration of phylogenetic relationships of several
species yields broad information about their evolution.

There are different approaches for the reconstruction of phy-
logeny or comparison of genomes. On lower levels, the
nucleotide or protein sequences can be explored. On a higher
level, the order of genes within the genome is analyzed to
study its structure, where the term gene is generally understood
to mean any kind of genomic segment or marker.

Genomes with equal gene content can easily be modeled
with permutations, where a unique identifier is assigned to
each gene. A convenient way to account for the orientation
of a gene within the genome is to use signed permutations,
where each gene is represented by a signed integer. Given
such a model for the gene order, gene clusters, parts of the
genome that are conserved during evolution, can be defined
to study common structures in related genomes. It has been
shown that such conserved regions often contain functionally
or evolutionary associated genes: Dandekar et al. [1] found
that proteins encoded by conserved gene pairs appear to
interact physically, and Overbeek et al. [2] showed that it is
possible to predict functional coupling based on gene clusters.
In line with these studies, it has been confirmed that genome
comparison can be used to identify conserved clusters of
functionally related genes [3], [4]. Lathe, Snel and Bork [5]
and Tamames [6] suggested that the selective pressure for
co-localization goes even beyond co-expression since they
found conserved regions spanning more than one operon.
Other causes for gene clusters were discussed by Lawrence
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and Roth [7], in particular horizontal gene transfer. In this
respect, the identification of conserved regions might also
provide insight into the evolutionary history of genes.

There exists a variety of different definitions of gene clusters
based on different models for gene order. Most cluster models
can either be formulated as r-window clusters, where a region
of given size has to contain at least a specified set of genes, or
as max-gap clusters, where the distance between the regions
containing a specified set of genes is never larger than a
given gap size. See [8] and [9] for recent surveys of different
concepts of gene clusters. We consider a concept that in
general includes all these models.

If different species share a gene cluster, it is likely that this
is inherited from a common ancestor. Given the phylogeny
and the gene clusters of contemporary species, our goal is to
reconstruct putative gene clusters for the ancestral species.

Depending on specific models for the gene order and gene
clusters, putative ancestral gene clusters derived from different
contemporary species can be in contradiction with each other,
which we call a conflict. If a reconstructed set of clusters
contains a conflicting subset, this would exclude the existence
of any potential, ancient gene order that contains all these
clusters. Hence, a natural aim for a reconstructed set of clusters
is to rule out that it contains any conflicts, i.e. we want to
ensure consistency. This framework was set by Bergeron et
al. [10] who present an algorithm that reconstructs sets of
conserved intervals which are consistent. But their approach
does not optimize any objective function. Adam et al. [11]
introduced parsimony as an objective function, requiring that
the number of formations and losses of gene clusters is
minimized. But their algorithm does not always find an exact
solution. In addition, a second heuristical step is added to reach
consistency.

In this paper, we define a new objective function for
the problem of annotating a phylogenetic tree with sets of
gene clusters that includes both parsimony and consistency,
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called the labeling problem. As a first result, we elucidate an
important relation between these two criteria, which is used
to solve the problem. Any most parsimonious labeling can
be modified to reach consistency and therefore optimality by
deleting clusters which are involved in conflicts. To this end,
we introduce a first, simple algorithm to find all conflicting
subsets, which is a general, central issue in the context of
consistency. Furthermore, as our main result, we present a
method that always finds an exact solution for the labeling
problem. It is based on the Fitch-Hartigan approach to find
a most parsimonious labeling of the tree. Then a bounded
search is used to transform this into an optimal labeling. Since
the search space can grow exponentially with respect to the
genome lengths and we want to provide an exact solution, this
search strategy has a exponential worst-case time complexity.
Two different search strategies are combined to increase the
sensitivity. It should be noted that all presented results and
algorithms are oracle based and therefore not restricted to
a fixed definition of gene clusters. A detailed evaluation on
simulated data using different concrete gene cluster models,
and a showcase analysis on real data confirm the effectiveness
of the method and our definition of optimality.

The paper has been organized in the following way. In
Section 2, we give an abstract definition of gene clusters. We
then define some concepts, including consistency, based on
this definition, and formally introduce the Labeling Problem.
In Section 3, we describe our exact method for finding an
optimal solution. Section 4 shows our evaluation on both sim-
ulated and real data, before we finish with some discussions
and conclusions in Section 5.

An implementation including some specific gene cluster
models is available from the web site: http://bibiserv.techfak.
uni-bielefeld.de/rococo/.

2 GENE CLUSTER RECONSTRUCTION

In Section 2.1 we introduce a general concept of gene clusters.
The term consistency is defined in Section 2.2. It is a central
point of the labeling problem described in Section 2.3.

2.1 Gene Cluster Model

We define an abstract gene cluster model that is both, general
enough to allow various definitions of different models of
gene clusters, and concrete enough to be used in the presented
algorithm. In genome comparison, conserved gene clusters are
usually defined on sets of genomes. However, for the moment
we define the presence of a cluster for just one genome.

Definition 1 (Gene cluster model): A gene cluster model is
a triple (U , C, ∃) where

U is a finite set, called the universal set, i.e. the set of
all possible genomes;
C is the set of all possible gene clusters; and
∃⊆ C × U is a binary relation that determines whether

a gene cluster c ∈ C is contained in a genome g ∈ U .
This general model allows the concrete instantiation of well

known cluster definitions like common intervals or conserved
intervals:

Example (Common intervals on unsigned permutations):
Let N be the length of the genomes and GN := {1, . . . , N}
the set of all genes. Then the gene cluster model for common
intervals on unsigned permutations [12] is defined as (Ucomm,
Ccomm, ∃comm), where

Ucomm is the set of all permutations on GN ;
Ccomm := P(GN ) is the power set of GN ; and
c ∃comm g :⇔ all genes in c occur contiguously in
genome g.

Note that trivial clusters like singletons and clusters of size
N would not provide any deeper insight and will be ignored.
Also note that this definition applies to signed permutations
similarly by simply ignoring the signs.

A common interval of size two is called an unsigned
adjacency.

Example (Conserved intervals on signed permutations):
Again, let N be the length of the genomes and GN :=
{1, . . . , N} the set of all genes. A conserved interval [aIb],
defined on signed permutations, consists of two extremities
a and b with |a|, |b| ∈ GN , and a set of inner elements
I ⊆ GN\{|a|, |b|}. We say that [aIb] is contained in a signed
permutation π, if and only if in π a is followed by b or −b by
−a, and in between these extremities, exactly the elements of
I occur with arbitrary signs. Then the gene cluster model for
conserved intervals on signed permutations [13] is defined as
(Ucons, Ccons, ∃cons), where

Ucons is the set of all signed permutations over GN ;
Ccons is the set of all conserved intervals over GN ; and
[aIb] ∃cons g :⇔ [aIb] is contained in g.

Example (Signed adjacencies on signed permutations):
Again, let N be the length of the genomes and GN :=
{1, . . . , N} the set of all genes. Then the gene cluster model
for signed adjacencies on signed permutations is defined as
(Uadj , Cadj , ∃adj), where

Uadj is the set of all signed permutations over GN ;
Cadj is the set of all pairs (a, b) with |a|, |b| ∈ GN ; and
(a, b) ∃adj g :⇔ in g, a is directly followed by b or −b
by −a.

A signed adjacency (a, b) is equivalent to a conserved
interval with no inner elements [a{}b].

Other gene cluster models, e.g. based on sequences or
circular permutations, can be defined similarly. Different ap-
proaches are discussed in Section 5.

2.2 Consistency

A set of gene clusters can be used to represent a set of
genomes: all genomes of the universal set that contain the
clusters of the set.

Definition 2 (Genome set): Let (U , C, ∃) be a gene cluster
model and C ⊆ C a set of gene clusters. The genome set of C,
denoted by GS(C), is the subset of genomes in U that contain
all gene clusters in C:

GS(C) := {g ∈ U | c ∃g ∀ c ∈ C} .
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Example: Assume the gene cluster model for common
intervals on unsigned permutations with N = 5.

Let C =
{
{1, 2}, {2, 3}, {1, 2, 3, 4}, {4, 5}

}
. Then the

genome set of C is:
GS(C) =

{
(1, 2, 3, 4, 5), (5, 4, 1, 2, 3), (5, 4, 3, 2, 1),

(3, 2, 1, 4, 5)
}

.

A naive algorithm to compute GS(C) would follow the
definition and enumerate all possible genomes, and then it
would test for each of them whether it contains all clusters
in C or not. In general, the cardinality of the universal set
can increase exponentially w.r.t. the length of the genomes.
Hence, processing all genomes is infeasible for most instances.
However, for unsigned permutations, PQ-Trees provide a more
sophisticated method to perform this filtering procedure and a
compact way to represent its result [14], [15]. Even for signed
permutations, a technique shown in [10] allows to use this data
structure.

The genome set of a specific set of gene clusters is empty
if some of the clusters are in contradiction with others.
The following notion, introduced by Bergeron et al. [10],
formalizes this concept.

Definition 3 (Conflicting set of gene clusters): Let (U , C,
∃) be a gene cluster model and C ⊆ C a set of gene clusters.

C is conflicting if GS(C) = ∅. C is minimal conflicting if it
is conflicting and for each c ∈ C : GS(C\{c}) 6= ∅.

Note that every conflicting set is either minimal conflicting
or it contains minimal conflicting subsets. For a set of gene
clusters C, let Conf(C) be the set of all minimal conflicting
subsets of C.

Example: Assume the gene cluster model for unsigned
adjacencies on unsigned permutations with N = 4.

Let C =
{
{1, 2}, {2, 3}, {2, 4}, {1, 3}

}
be a given set of

unsigned adjacencies. C is conflicting, since GS(C) = ∅, and
it contains exactly two minimal conflicting subsets:

C1 =
{
{1, 2}, {2, 3}, {2, 4}

}
, and

C2 =
{
{1, 2}, {2, 3}, {1, 3}

}
.

Following Definition 3, this can be seen, for instance for
C1, as follows:

GS(C1) = GS
({
{1, 2}, {2, 3}, {2, 4}

})
= ∅

GS
(
C1\

{
{1, 2}

})
= GS

({
{2, 3}, {2, 4}

})
=
{
(1, 3, 2, 4), (1, 4, 2, 3), . . .

}
6= ∅

GS
(
C1\

{
{2, 3}

})
= GS

({
{1, 2}, {2, 4}

})
=
{
(1, 2, 4, 3), (3, 1, 2, 4), . . .

}
6= ∅

GS
(
C1\

{
{2, 4}

})
= GS

({
{1, 2}, {2, 3}

})
=
{
(1, 2, 3, 4), (3, 2, 1, 4), . . .

}
6= ∅

Since C1 and C2 are the only minimal conflicting subsets
of C, we have Conf(C) = {C1, C2}.

2.3 The Labeling Problem
In a phylogenetic context, given the gene order (and therefore
the gene clusters) of contemporary species, we want to infer
sets of conserved gene clusters for the ancestral genomes as
shown in Fig. 1(a). If we assume that a phylogenetic tree is

given and all of the descendants of an ancestral node v share
a gene cluster, it is obvious that v should be labeled with
this cluster as well. Similarly, if none of the descendants have
a specific cluster, the node should not be labeled with that
cluster. But what if only a subset of the descendants shows a
common structure? And what if different descendants suggest
conflicting clusters for the node v?

Since we do not know what exactly has happened during
evolution, many answers can be motivated without ever being
verified. Even though a reconstruction algorithm may sound
very plausible (like the one presented in [10]), a more natural
way to ensure explanatory power of the results may be the
definition of an objective function that rates a given labeling.
This way, we can specify properties of a good result and verify
whether an algorithm finds one of the optimal solutions.

One reasonable and therefore commonly used approach for
reconstructing labelings of inner nodes in a given phylogenetic
tree is maximum parsimony, which assumes that a scenario
with a minimal number of changes is most reasonable. In
our case, we want to minimize the number of formations and
losses of gene clusters.

Definition 4 (Parsimony): Let (U , C, ∃) be a gene cluster
model and T = (V,E) be a tree with each leaf l ∈ V labeled
with a set of gene clusters Cl. A labeling λ : V → P(C) is
most parsimonious if λ(l) = Cl for all leaves and the total
weight

W (T, λ) :=
∑

(u,v)∈E

∣∣∣( λ(u) ∪ λ(v)
)∖(

λ(u) ∩ λ(v)
)∣∣∣

is minimal.
This criterion still allows conflicts, as shown in Fig.1(a)

and 1(b). Next, we define a criterion to exclude conflicts.
Definition 5 (Consistency): Let (U , C, ∃) be a gene cluster

model and T = (V,E) be a tree. A labeling λ : V → P(C) is
consistent if for all v ∈ V the labeling contains no conflicts,
Conf(λ(v)) = ∅.

We consider the problem of finding a labeling that is both
parsimonious and consistent.

Definition 6 (Labeling Problem): Let (U , C, ∃) be a gene
cluster model and T = (V,E) a tree with each leaf l ∈ V
labeled with a set of gene clusters Cl. The labeling problem
is to find, under all consistent labelings of T , a labeling λ of
minimal weight W (T, λ). Such a labeling is called optimal.

See Fig. 1 for examples of the different criteria.
If a labeling λ of T has minimal weight but is inconsistent,

we suppose that it contains too many clusters, and we therefore
reach consistency by deleting some conflicting clusters from
the labeling of some nodes. The following Theorem 1 verifies
that we find an optimal labeling using this strategy. It excludes
the existence of any labeling that contains clusters which the
parsimonious labeling λ does not include, but nevertheless
has a smaller weight. Moreover, Theorem 2 guarantees that
all optima can be found this way. Fig. 2 illustrates the
relationships between the different classes of labelings.

Theorem 1: Let λpar : V −→ P(C) be a parsimonious
labeling for a tree T = (V,E). Then there exists an optimal
labeling λopt with λopt(v) ⊆ λpar(v) for all v ∈ V .
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(2,3,1) ⇒ {2, 3}, {1, 3}

(1,2,3) ⇒ {1, 2}, {2, 3}

(3,1,2) ⇒ {1, 3}, {1, 2}

?

?

(a)

{2, 3}, {1, 3}

{1, 2}, {2, 3}

{1, 3}, {1, 2}

0

1 1

1

{1, 2}
{1, 3}
{2, 3}

{1, 3}
{2, 3}

(b)

{2, 3}, {1, 3}

{1, 2}, {2, 3}

{1, 3}, {1, 2}

0

3 1

1{1, 2}

{1, 3}
{2, 3}

(c)

{2, 3}, {1, 3}

{1, 2}, {2, 3}

{1, 3}, {1, 2}

0

0 2

2
{1, 3}
{2, 3}

{1, 3}
{2, 3}

(d)

Fig. 1. Example of different labelings for a given instance of the labeling problem. (a) The given tree with labeled
leaves and the gene cluster model of unsigned adjacencies with genome length 3. U = {(1,2,3), (1,3,2), (2,1,3),
(2,3,1), (3,1,2), (3,2,1)}; C =

{
{1, 2}, {1, 3}, {2, 3}

}
; {1, 2} ∃(1,2,3), {1, 2} @(1,3,2), {1, 2} ∃(2,1,3), . . . (b) A most

parsimonious labeling of weight 3 (edges are annotated with their weights). Note that this labeling is inconsistent
since

{
{1, 2}, {1, 3}, {2, 3}

}
is a (minimal) conflicting set. (c) A consistent labeling of weight 5. Note that this labeling is

neither most parsimonious nor optimal. (d) An optimal (i.e. most parsimonious consistent) labeling of weight 4. There
is no consistent labeling of smaller weight.

Proof: We consider the labeling for each gene cluster c
separately:

λc(v) :=
{

1 if c ∈ λ(v),
0 otherwise.

For contradiction, assume that for each optimal labeling
λopt there is at least one cluster c satisfying the condition
λopt

c (v) = 1 and λpar
c (v) = 0 for some node v ∈ V . For

such a cluster, consider a maximal connected component of
vertices in T which satisfy this condition and let v1, . . . , vk

be the neighboring nodes that do not satisfy the condition by
definition. See Fig. 3(a) and 3(c) for an example.

For each of these nodes vi, 1 ≤ i ≤ k, one of the following
cases must hold:

(i) λpar
c (vi) = 1, λopt

c (vi) = 1
(ii) λpar

c (vi) = 1, λopt
c (vi) = 0

(iii) λpar
c (vi) = 0, λopt

c (vi) = 0
We denote the number of nodes satisfying (i) by k11, and the

other quantities by k10 and k00 respectively, such that k11 +
k10 + k00 = k, and construct the following labelings:
• Let λpar,1 be the labeling we get by substituting the inner

zeros of λpar by ones (cf. Fig. 3(b)).
• Let λopt,0 be the labeling we get by substituting the inner

ones of λopt by zeros (cf. Fig. 3(d)).
Then the following equations hold:

W (T, λpar,1) = W (T, λpar) + k00 − k10 − k11 (1)

W (T, λopt,0) = W (T, λopt) + k11 − k10 − k00 (2)

We now consider the following cases:

Case k00 < k11: In this case, (1) yields W (T, λpar,1) <
W (T, λpar). This contradicts the parsimony of λpar.

Case k00 > k11: In this case, (2) yields W (T, λopt,0) <
W (T, λopt). Since the weight of λopt,0 is smaller and it is
consistent as well, this contradicts the optimality of λopt.

Case k00 = k11: If k10 > 0, we again get
W (T, λpar,1) < W (T, λpar), which contradicts the parsimony
of λpar. Otherwise, we have W (T, λopt,0) = W (T, λopt).
Hence, λopt,0 is optimal. If there is no other node v with
λopt

c (v) = 1 and λpar,1
c (v) = 0, this contradicts the assumption

that there is no such optimal labeling. If there is another
such node, we continue the whole argumentation recursively
with λopt,0 until we eventually end up in one of the above
contradictions.

Theorem 2: Let λopt : V −→ P(C) be an optimal labeling
for a tree T = (V,E). Then there exists a parsimonious
labeling λpar with λopt(v) ⊆ λpar(v) for all v ∈ V .

Proof: The proof is similar to the proof of Theorem 1
with switched roles of λpar and λopt.

Let λopt be an optimal labeling and assume that for each
parsimonious labeling λpar there is at least one cluster c
with λopt

c (v) = 1 and λpar
c (v) = 0 for some node v ∈ V .

Given the same definitions of λopt,0 and λpar,1 as in the
proof of Theorem 1, (1) and (2) hold and we get the same
contradictions, except for the last case:

Case k00 = k11: If k10 > 0, we again get
W (T, λpar,1) < W (T, λpar), which contradicts the parsimony
of λpar. Otherwise, we have W (T, λpar,1) = W (T, λpar).
Hence, λpar,1 is parsimonious. If there is no other node v with
λopt

c (v) = 1 and λpar,1
c (v) = 0, this contradicts the assumption
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(a) (b)

Fig. 2. Example for the different classes of labelings and their relations. (a) The space of all possible labelings for a
given problem instance including four labelings explicitly: λ1 to λ4. The labelings are arranged according to their weight
W (T, λ) and whether they are consistent (e.g. λ4) or not (e.g. λ1, λ2, and λ3). Within the set of consistent labelings, the
ones with minimal weight W opt are optimal (e.g. λ4). It is always possible to get an optimal labeling by deleting some
gene clusters from a most parsimonious labeling of weight W par (e.g. λ1 or λ2). A deletion of a cluster is depicted
by an arrow. (b) The actual labelings λ1 to λ4 for the clusters a, b and c. We assume the set {a, b, c} to be minimal
conflicting. Hence λ4 is consistent, whereas λ1, λ2 and λ3 are not.

that there is no such parsimonious labeling. If there is another
such node, we continue the whole argumentation recursively
with λpar,1 until we eventually end up in one of the other
contradictions.

3 METHOD

Theorem 1 motivates a strategy to find an optimal labeling
by deleting clusters from a possibly inconsistent parsimonious
labeling. In order to do this, we have to

1) compute a parsimonious labeling,
2) find the conflicts, and to
3) identify the nodes and the corresponding clusters that

have to be excluded.
We will use a variant of the Fitch-Hartigan algorithm to

solve the first step (Section 3.1), a recursive strategy to find
all minimal conflicting subsets (Section 3.2), and a branch and
bound approach for the last step (Section 3.3) — each using
the general definition of a gene cluster model. In Section 3.4,
we describe how to reconstruct an optimal labeling that
preferably contains many clusters.

3.1 Fitch and Hartigan

The subproblem of finding a parsimonious labeling can be
reduced to a series of parsimony problems for binary variables.
Therefore, we consider the labeling for each gene cluster c
separately:

λc(v) :=
{

1 if c ∈ λ(v),
0 otherwise.

Obviously, a cluster that is not contained in any of the given
gene orders will not be reconstructed for any node. Hence, we
can restrict the set of all gene clusters C to the clusters present
in the given genomes. For each of these clusters, we calculate

a most parsimonious zero-one annotation. Parsimony in this
case means that we minimize the weight

Wc(T, λc) :=
∑

(u,v)∈E

{
1 if λc(u) 6= λc(v)
0 otherwise

}
.

Note that the individual weight corresponding to cluster c
is denoted by w, whereas the total weight is denoted by W .

Minimizing w(T, λc) for all clusters c implies minimality
for W (T, λ) and therefore parsimony of λ:∑

c∈C
w(T, λc) =

∑
c∈C

∑
(u,v)∈E

{
1 if λc(u) 6= λc(v)
0 otherwise

}

=
∑

(u,v)∈E

∑
c∈C

{
1 if λc(u) 6= λc(v)
0 otherwise

}
=

∑
(u,v)∈E

∣∣∣{ c ∈ C | λc(u) 6= λc(v)
}∣∣∣

=
∑

(u,v)∈E

∣∣∣( λ(u) ∪ λ(v)
)∖(

λ(u) ∩ λ(v)
)∣∣∣

=W (T, λ)

Minimizing the individual weight for a given tree is a
special case of the well known Small Parsimony Problem,
which can be solved by the linear time algorithm of Fitch
and Hartigan [16], [17]. (For further discussion of the method
see [18] and [19].) Notice that the more common algorithm,
described by Fitch [16], is less comprehensive than the more
generalized version of Hartigan [17], which finds all parsimo-
nious labelings and is not limited to binary trees. We use the
latter algorithm for zero-one instances as given in Alg. 1.

In lines 11 and 13 of Alg. 1, there may be an arbitrary
choice of labeling a node v either with λc(v) = 0 or
λc(v) = 1. Preferring λc(v) = 1 yields a labeling containing
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(a) λpar
c (b) λpar,1

c

(c) λopt
c (d) λopt,0

c

Fig. 3. An example for the connected component used in the proof of Theorems 1 and 2. The same subtree is depicted
with the different labelings. The squared nodes are the inner nodes, and the round nodes are the surrounding vi.

more clusters. However, the more clusters are reconstructed,
the more conflicts can occur. We suggest two strategies with
different aims. Later, in Section 3.4, we will describe how both
can be combined in a two-phase approach. The two strategies
are:

Sparse variant: To avoid conflicts in the first place, we
choose λc(v) = 0 whenever possible.

Dense variant: To reconstruct as many clusters as possi-
ble, we choose λc(v) = 1 whenever possible.

3.2 Finding minimal conflicting sets

Given a set of gene clusters C, a naive way to compute
Conf(C), the set of all minimal conflicting subsets of C,
would be exhaustive search: Enumerating all subsets of C and
testing for each of them whether it is minimal conflicting.
The following observation motivates a more sophisticated
approach.

Observation 1: Let (U , C, ∃) be a gene cluster model and
C ⊆ C a minimal conflicting set of gene clusters. Then there
is no conflicting subset C ′ ⊂ C.

Based on this, our algorithm for finding all minimal con-
flicting subsets of a given set of clusters C consists of three
steps.

1) First, we identify a conflicting subset M ⊆ C by starting
with M = ∅ and then incrementally expanding M by
elements of C until the genome set GS(M) = ∅.

2) Now we successively discard elements from M for
which M\{c} still contains a conflicting set. After
this step, we know that GS(M) = ∅ and for all
c ∈ M : GS(M\{c}) 6= ∅. Hence M is a minimal
conflicting set by definition.

3) Finally, we have to find all remaining minimal con-
flicting subsets of C. We start a recursive search for
each c ∈ M searching for minimal conflicting subsets
of C\{c}. This way we exclude the possibility that
the same conflicting set might be found again in the
recursive calls. Furthermore, Observation 1 guarantees
that we do not miss any minimal conflicting set.

This strategy is detailed in Alg. 2.
The efficiency of Alg. 2 depends on the actual gene cluster

model. Hence in this general context, we analyze the running
time in terms of the number of GS-calculations, which we
denote by #GS. Let C be a set of gene clusters and m the
number of minimal conflicting subsets of C. If C does not
contain any conflict, GS is computed once. Otherwise, in the
first two loops GS is computed O(|C|) times and in the last
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Algorithm 1 Fitch-Hartigan for Zero-One Instances
FitchBin(T ) −→ λc

Given: A tree T = (V,E) with each leaf l ∈ V labeled with
λc(l) ∈ {0, 1}.

Output: A labeling λc : V → {0, 1} with minimal w(T, λc).
1: //Bottom-up phase:
2: for each leaf l do
3: U(l) := {λc(l)}
4: L(l) := ∅
5: for each unlabeled node v whose children u1, . . . , u`(v)

are labeled do
6: k(b) := |{ui | b ∈ U(ui)}|
7: K := maxb∈{0,1}{k(b)}
8: U(v) := {b | k(b) = K}
9: L(v) := {b | k(b) = K − 1}

10: //Top-down refinement:
11: assign any b ∈ U(r) to the root node r: λc(r) := b.
12: for each unrefined internal node u whose parent node v

is already refined to λc(v) = a do
13: refine u to λc(u) := b, with any b ∈ B(u, a):

B(u, a) :=


{a} if a ∈ U(u),
{a} ∪U(u) if a ∈ L(u),
U(u) otherwise.

Algorithm 2 Search for Conflicting Subsets
SearchConf(C) −→ Conf(C)
Given: A set of gene clusters C = {c1, c2, . . . , c|C|} ⊂ C.
Output: Conf(C), the set of min. conflicting subsets of C.

1: ConfList←− empty list
2: SearchConfRec(C,ConfList)
3: return ConfList

Procedure SearchConfRec(C,ConfList)

Given: A set of gene clusters C = {c1, c2, . . . , c|C|} ⊂ C.
4: if GS(C) = ∅ then
5: M := ∅
6: i = 1
7: while GS(M) 6= ∅ and i ≤ |C| do
8: M := M ∪ {ci}
9: for each c ∈M do

10: if GS(M\{c}) = ∅ then
11: M := M\{c}
12: if M /∈ ConfList then
13: append M to ConfList
14: //recursion
15: for each c ∈M do
16: SearchConfRec(C\{c},ConfList)

loop there are O(|C|) recursive calls with m decreased by
one:

#GS(0) = 1
#GS(m) = O

(
|C|+ |C|#GS(m− 1)

)
= O

(
|C|m

)
.

The space requirement S comprises the recursion stack of
size O(m|C|) times some space smodel for the input, the output,
and the calculation of GS which depends on the actual model
and its implementation.

Further research might explore the existence of a more
efficient method to compute all minimal conflicting subsets.
Even so, the following example concerning adjacencies shows
that the number of minimal conflicting subsets can be expo-
nential with respect to the genome length and to the size of
C. Similar examples can be constructed for all gene cluster
models discussed in this paper. Hence, in general, the time
and space requirements of the computation of the minimal
conflicting sets is exponential.

Example: Assume the gene cluster model for unsigned
adjacencies on unsigned permutations with genome length
N = 2n + 1 for any n > 0. Consider the following set of
adjacencies:

C =
{
{g, g + 1} | g = 1, . . . , N − 1

}
∪
{
{g, g + 2} | g = 1, 3, . . . , N − 2

}
∪ {1, N}

We can force each pair of genes g and g + 2 (for all
g = 1, 3, 5, . . . , N − 2) to be connected in the genome either
directly by using the adjacency {g, g+ 2}, or via g+ 1 using
the adjacencies {g, g + 1} and {g + 1, g + 2}. This way, we
have 2n possibilities to build a chain from 1 to N . If we add
the adjacency {1, N}, this would yield a cycle in the genome.
Because cycles are not allowed in the model, this is a conflict.
Furthermore, if we take out any of the adjacencies, we break
the cycle as well as the conflict. Hence, all considered subsets
of C are minimal conflicting.

As a result, C contains at least 2bN/2c minimal conflicting
subsets. This number is also exponential in the size of C since
|C| is linear in N .

Sometimes one gene cluster causes multiple conflicts. In the
following, we are interested in those clusters that are involved
in most of the conflicts.

Definition 7 (Conflict index): Let (U , C, ∃) be a gene clus-
ter model, C ⊆ C a set of gene clusters and c ∈ C. The
conflict index of c w.r.t. C is defined as:

CI(C, c) := |{C ′ ∈ Conf(C) | c ∈ C ′}|.

Example: Assume the gene cluster model for unsigned
adjacencies on unsigned permutations with N = 4.

Let C =
{
{1, 2}, {2, 3}, {2, 4}, {1, 3}

}
be a given set

of unsigned adjacencies. C contains exactly two minimal
conflicting subsets:

Conf(C) =
{{
{1, 2}, {2, 3}, {2, 4}

}
,{

{1, 2}, {2, 3}, {1, 3}
}}

The clusters {1, 2} and {2, 3} are contained in both
minimal conflicting sets. Therefore, their conflict index is
CI
(
C, {1, 2}

)
= CI

(
C, {2, 3}

)
= 2. The other two clusters

appear just once, hence, CI
(
C, {2, 4}

)
= CI

(
C, {1, 3}

)
= 1.
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3.3 Branch and Bound Search

Given an inconsistent labeling, we want to delete some
clusters for some nodes until we reach consistency. In this
process, we have to find a sequence of deletions that increases
the total weight W (T, λ) as little as possible. In general,
we consider all possible such sequences using a recursive
approach: If after a deletion, a consistent labeling is reached,
no further deletions are needed and the current labeling is
saved as a potential optimum. Otherwise, further deletions
are performed in a recursive branch and bound manner: For
each cluster c ∈ C and for each node v, we make a copy of
the labeling, delete cluster c from the labeling of node v, and
start a new recursion with the new labeling. In the end, from
all potential optima, one with lowest weight is reported as an
actual optimum.

Obviously, for a most parsimonious labeling a deletion can
not decrease the weight. But in general, during the exploration
of the search space, a deletion of a cluster c for a node v could
create a labeling whose weight can be decreased by further
deletions of the same cluster c in nodes neighboring v. See
Fig. 4 for an example. Since we are interested in labelings
with lowest possible weight, we directly perform these further
deletions in a re-optimization step. To this end, we perform the
Fitch-Hartigan algorithm for the current cluster with a fixed
value for the actual node: λc(v) = 0. For this, the tree does
not have to be traversed completely, but just as long as any
changes occur as described in Alg. 3.

The following Lemma guarantees parsimony of the re-
optimized labeling w.r.t. the fixed values for deleted clusters.

Lemma 1: Let T = (V,E) be a tree with each node v ∈
V ′ ⊆ V , including all leaves, labeled with a value bv . The
following variant of the Fitch-Hartigan algorithm yields a most
parsimonious labeling w.r.t. the given constraints, i.e. λc(v) =
bv for all v ∈ V ′.
• Bottom-up:

1) If the processed node v is in V ′, than U(v) := {bv}
and L(v) := ∅.

2) Otherwise, compute U(v) and L(v) as defined in
Alg. 1.

• Top-Down:
1) If the processed node v is in V ′, then λc(v) := bv .
2) Otherwise, compute λc(v) as defined in Alg. 1.

Proof: A node with a fixed value can be seen like a
leaf. Hence, the tree with this node as a leaf is parsimonious.
The subtree rooted at this node is parsimonious, since the
calculation of B(u, a) and the following choice of λc(u)
guarantee parsimony for both possible values of λc(v) = a,
independently of U(v) and L(v) (cf. [17]).

Hence, the entire tree is parsimonious under the given
constraint of the fixed values.

As in the computation of a parsimonious labeling (Alg. 1),
the result of the re-optimization does not have to be unique.
Since Theorem 1 also holds for instances that include values
fixed to zero, all possible re-optimization results allow to find
an optimum by further deletions.

(a) Before deletion:
w(T, λc) = 1.

(b) After deletion:
w(T, λ′

c) = 4.

(c) After re-optimization:
w(T, λ′′

c ) = 3.

Fig. 4. Example for the re-optimization after deleting a
cluster. A tree T and different labelings for a specific
cluster c are shown. Fixed values are depicted in round
nodes. Thin edges add 0 to the weight w(T, λc) and bold
edges add 1. (a) T is labeled with a most parsimonious
labeling λc with weight w(T, λc) = 1. (b) Deleting c for
node u increases the weight to w(T, λ′c) = 4. (c) The re-
optimization decreases the weight to w(T, λ′′c ) = 3.

Algorithm 3 Re-Optimization after Deletion
ReOpt(T, u)
Given: A tree T = (V,E) and a node u ∈ V in which the

labeling changed
1: fix the new value of u
2: //bottom-up phase:
3: for each node v in a bottom-up fashion, starting with u

do
4: perform bottom-up step of Lemma 1
5: if U(v) and L(v) remain unchanged then
6: do not process any further parents of v
7: //top-down phase:
8: for each node v where

• U(v) or L(v) changed during the bottom-up phase,
or

• λc(p) for parent p of v changed during the top-down
phase

do
9: perform top-down step of Lemma 1

We perform the re-optimization after each deletion, before
starting the recursion. This guarantees that the weight can
not be decreased in any recursive call. Therefore the current
recursion is stopped once the current weight exceeds the
weight of the best solution found so far, like shown in Fig. 5.

Obviously, the weight of a (consistent or inconsistent) most
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parsimonious labeling or a known optimum (if we want to
find further optima) can be used as lower bounds. Once a
consistent labeling of such a minimal weight is found, the
search can be stopped completely.

Fig. 5. Example for the bounding. The space of all
possible labelings for a given problem instance is shown
including same labelings explicitly. The labelings are ar-
ranged according to their weight W (T, λ) and whether
they are consistent (e.g. λbest, λopt) or not (e.g. λ1 to λ8).
Once a consistent labeling λbest is found, all labelings with
higher weight are discarded (shown in gray).

To find consistent solutions with low weight, to be used
as upper bounds, preferably quickly, we start the recursions
in a promising order. To annihilate as many conflicts as
possible by one deletion, we first compute the conflict index
for each node for each cluster and select the candidates in
descending order of their conflict index. Moreover, the re-
optimization step often causes deletions of the same cluster
for neighboring nodes. This again can annihilate more conflicts
without a further increase of the weight. Hence, we consider
the number of conflicts a cluster causes in the overall tree.
Since the exactness of the algorithm does not depend on the
order of the recursions, the desired order does not have to
be determined exactly. To save time in this sorting step, we
just estimate the conflict index instead of computing it exactly.
A simple bounding of the recursion depth during the search
for conflicting subsets (Alg. 2) already gives a suitable speed
up, although the search has to be repeated if not all conflicts
have been covered by the preceding search. A limitation to
depth two results in a quadratic time complexity for each
bounded search. Experiments show that this yields the best
tradeoff for estimation quality and running time. Further, more
sophisticated estimation strategies are under consideration.

The overall strategy is detailed in Alg. 4.

Theorem 3: Alg. 4 solves the labeling problem exactly.
Proof: The exactness of the algorithm follows from

Theorem 1, Lemma 1 and the above description.

3.4 Two Phase Approach
As mentioned in Section 3.1, the computation of a most
parsimonious labeling does not always yield a unique result.

Algorithm 4 Recursive Search for an Optimal Labeling
FindOpt(T, λpar) −→ λopt

Given: A Tree T and a most parsimonious labeling λpar.
Output: An optimal labeling λopt.

1: λopt ← null, W (T, λopt)←∞
2: FindOptRec(T, λpar, λopt)
3: return λopt

Procedure FindOptRec(T, λ, λopt)

Given: A Tree T = (V,E), a labeling λ, and λopt, the
consistent labeling with the lowest weight found so far.

4: if λ is consistent then
5: λopt ← λ
6: else
7: for each cluster c ∈ C

in descending order of
∑

v∈V

CI(λ(v), c) do

8: for each node v ∈ V
in descending order of CI(λ(v), c) do

9: λ′(v)← λ(v)\{c}
10: ReOpt(T, v) (Alg. 3)
11: if W (T, λ′) < W (T, λopt) then
12: FindOptRec(T, λ′, λopt)

Depending on the decisions made, the recursive search de-
scribed in the previous section may give different labelings, all
of which are optimal. We already introduced the two extremes,
the sparse and the dense variant. On the one hand, the dense
variant finds more clusters than the sparse. On the other hand,
more clusters accompany more conflicts, which makes the
branch and bound search for an optimum slower. We combine
the advantages of both: In the first phase, the sparse variant is
used to get a parsimonious labeling containing as few conflicts
as possible, which can then be solved by the branch and bound
search very quickly. In the second phase, the dense variant is
used to reconstruct as many clusters as possible. This tends to
result in many conflicts, which have to be solved by Alg. 4.
But the branch and bound search can be accelerated by the
result of the first phase:
• The recursion can be bounded by the known optimal

weight (in line 11).
• The search can be completely stopped, once a consistent

labeling with the optimal weight is found (in line 4).
The overall procedure is summarized in Alg. 5. Note that each
phase separately finds an optimum.

Theorem 2 guarantees that for all optimal labelings there is a
parsimonious labeling that can be used to find it. Furthermore,
the Fitch-Hartigan algorithm finds all parsimonious labelings
if all solutions are reported. Hence, the above procedure can
easily be adopted to find all optima. Certainly, it would not be
practical to actually compute all optima. Nevertheless, since
no optimum is excluded a priori, it would be possible to search
for some particular optima that obey certain additional criteria.

3.5 Efficiency

For the gene cluster models defined in Section 2.1, one
genome of length n contains O(n2) gene clusters. Therefore,
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Algorithm 5 Two-Phase Approach
TwoPhase(T ) −→ λopt

dense

Given: A tree T = (V,E) with each leaf l ∈ V labeled with
a set of gene clusters Cl.

Output: An optimal labeling λopt
dense.

1: //Phase 1:
2: λsparse←−

⋃
c∈C

sparse variant of FitchBin(T, c)

3: λopt
sparse←− FindOpt(T, λsparse)

4: //Phase 2:
5: λdense ←−

⋃
c∈C

dense variant of FitchBin(T, c)

6: λopt
dense ←− FindOpt(T, λsparse) bounded by W (T, λopt

sparse)

k genomes contain O(kn2) clusters. For the computation of a
most parsimonious labeling, one Fitch-Hartigan call is used for
each cluster. Hence, the running time and space requirements
for this first step are in O(k2n2).

However, the computation of an optimal labeling is not
polynomial, since the search space for the branch and bound
search grows exponentially w.r.t. the number of conflicting
clusters.

In our evaluation on simulated data (cf. Section 4), the
sparse variant very rarely yields any conflicts. Hence, in most
cases the weight of the optimum is equal to the weight of the
parsimonious labeling. Therefore the bound for the second
phase is very low and the recursion tree is shallow. Hence,
the first consistent labeling λopt

sparse is found very quickly,
and in the considered case this is optimal. However, for
some instances the dense labeling λdense in the second phase
comprises an infeasible amount of conflicts. In this case, we
have to be content to compute the sparse optimum only. This
already gives suitable results, like detailed in the following
section.

4 RESULTS
Since the output of our algorithm consists of gene clusters
of extinct species, a direct verification on biological data is
hardly possible. Therefore, we use simulated data to evaluate
the effectiveness of our method. Furthermore, we show its
capability on real data.

4.1 Evaluation on Simulated Data
For this evaluation, we generated simulated gene order data
using the program Rose-GEvolutionS, available from the web
site http://bibiserv.techfak.uni-bielefeld.de/rose/. In our simu-
lation, we assigned a gene order of length 100 to the root
of a balanced, binary tree with eight leaves and performed
several different rearrangement operations along the edges.
To compare different scenarios, we varied the number of
operations per edge and the type of operations (inversions
and transpositions with uniform length distribution). Then we
used the rearranged gene orders at the leaf nodes and the same
tree topology for the reconstruction. We have implemented the
gene cluster model for common intervals, conserved intervals,

and signed and unsigned adjacencies. After the computation
of an optimum, for each reconstructed cluster at each node,
we checked its existence in the simulated (true) gene order to
count the number of true positives (TP) and false positives
(FP). We counted the number of clusters which were present
in the simulated order, but not reconstructed by the algorithm
as false negatives (FN) and the rest as true negatives (TN).
Then we calculated the specificity, the sensitivity and the
precision (also known as positive predictive value), averaged
over ten runs:

Specificity =
TN

FP +TN

Sensitivity =
TP

TP +FN

Precision =
TP

TP +FP

Independent of the actual setup, the number of simulated
and reconstructed clusters was very small compared to the
number of all considered clusters. This entailed a very high
number of true negatives compared to the number of false
positives. Therefore, the specificity was always close to one.
Since this is not meaningful, we omitted the commonly used
ROC curve, which includes the sensitivity and the specificity.
Instead we studied the sensitivity and the precision to answer
the questions “How many of the ancestral clusters does our
method reconstruct?” and “How many of the reconstructed
clusters are correct?”.

Since the overall evaluation comprised several simulations
for many different parameters and models, we chose the small
genome length of 100. Table 1 shows stable sensitivity and
precision for increasing genome length for a constant ratio of
genome length and evolutionary rate.

TABLE 1
The results of the sparse variant for increasing genome

length and evolutionary rate using unsigned adjacencies.

Genome
length

Inversions
per edge Precision Sensitivity

Running time
(seconds per run)

100 20 0.99 0.36 0.5
250 50 1.00 0.34 3.2
500 100 1.00 0.34 11.6

1000 200 1.00 0.34 47.5
2000 400 1.00 0.34 199.4
4000 800 1.00 0.35 910.6

Fig. 6 shows the overall results of our method for the gene
cluster model of unsigned adjacencies. In Fig. 6 (left), we
see a high precision which is slowly decreasing for higher
evolutionary distances. The sensitivity is lower and declining
faster. In comparison to the sparse optimum, the precision of
the dense optimum is a bit lower, but the sensitivity is higher.
Thus, reconstructing more clusters comes at the cost of their
correctness. Fig. 6 (right) identifies the following relation: The
closer a node is to the root of the tree, the greater is the
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Fig. 6. The precision and sensitivity of Alg. 5 using
unsigned adjacencies. (a) Results for sparse and dense
optimum for different evolutionary rates. (b) Results for
different levels in the tree. (Three inversions per edge.)

distance to the given information at the leaves, and the greater
is the inaccuracy.

We got similar results for other gene cluster models. For
example, Fig. 7 (left) compares the results for unsigned and
signed adjacencies. When we include the orientation, the
precision decreases less steeply. Simultaneously, the sensitivity
is much lower. We see a similar behavior for clusters with
increasing sizes in Fig. 7 (right). In general, the more complex
the model (with signs, bigger size), the fewer clusters are
found. However, this only affects the sensitivity, not the
precision.

In Fig. 8, different rearrangement scenarios are compared.
The quality of the results is declining with the amount of
transpositions. A reason for this may be the fact that one
inversion breaks two adjacencies, whereas a transposition
breaks three. An analysis with corresponding evolutionary
rates validates this hypothesis (data not shown).

Fig. 9 shows the running time behavior of the two phases
of our reconstruction method (Alg. 5). The time for the recon-
struction is decreasing for increasing evolutionary distances in
both phases (sparse and dense optimum), because less clusters
were found and less conflicts had to be solved.
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Fig. 7. The precision and sensitivity of Alg. 5 using
different gene cluster models. (a) Results for the dense
optimum for unsigned adjacencies and signed adjacen-
cies. (b) Results for common intervals of different sizes.
(25 inversions per edge.)
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Fig. 8. The precision and sensitivity of Alg. 5 using un-
signed adjacencies for different rearrangement scenarios.
(25 inversions per edge.)

4.2 Experimental Results on Bacterial Genomes
To illustrate the results that can be achieved on real data, we
tested our method on a set of nine bacterial genomes. The
underlying data was taken from the NCBI database [20], [21]:
We created the phylogenetic tree shown in Fig. 10 using the
NCBI Entrez Taxonomy Database, and we extracted the gene
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Fig. 9. The running times of Alg. 5 for different evolution-
ary rates on a 900MHz Sparc processor with 4GB of main
memory. (a) Running times for unsigned adjacencies. (b)
Running times for signed adjacencies.

order information from the NCBI Entrez Genome Database.
As gene orders, we used sequences of clusters of orthologs
(COGs) [22], [23]. However, this raw sequence data did not
fit the cluster models which we have implemented. On the
one hand, there were COG numbers occurring more than
once in some genomes, and, on the other hand, to some
segments of the genome, no or more than one COG number
was assigned. Instead of deleting these positions from the
sequence, which could induce false clusters, we chose a more
rigorous approach. Clusters that contained such a position were
not taken into consideration for the reconstruction. To this
end, in a preprocessing step, we substituted each of these
positions by a marker, whereas consecutive positions were
substituted by one single marker. During the scan of a genome
sequence for all the clusters it contains, we skipped all clusters
that contained a marker. The genomes and the corresponding
sequence lengths are listed in Fig. 10.

We computed an optimal labeling using the dense approach
for the gene cluster model of unsigned adjacencies. The
computation took 5 minutes and 30 seconds on a 900MHz
Sparc processor with 4GB of main memory.

The result is summarized in Table 2. Often several ad-
jacencies overlap such that the exact order of the corre-

sponding genes is determined. In this case, we merged these
adjacencies (e.g. (a, b), (b, c), (c, d), . . .) into one chain (e.g.
[a, b, c, d, . . .]). The fact that we found only few long chains
may have several reasons. First of all, regions with exact
conservation of the gene order may be rare. Additionally, due
to the preprocessing, any duplicated or ambiguously annotated
gene breaks a chain.

TABLE 2
The number of reconstructed clusters for the different
internal nodes. For example, for Corynebacterineae 121
adjacencies have been reconstructed. These can be

merged to 76 chains, 26 of which contain more than two,
and four of which contain more than four genes.

Number of reconstructed clusters
Node Adjacencies Chains Chains>2 Chains>4
Corynebacterineae 121 76 26 4
Micrococcineae 98 55 19 4
Actinomycetales 97 60 16 5
Bacteria 247 135 59 11
Total 563 326 120 24

Amongst others, we found clusters solely composed of
genes which belong to a known gene cluster which was
found in cyanobacteria and eubacteria [24]. The labelings
for the different internal nodes regarding these clusters varied
only in some details. In Table 3, adjacencies common to all
nodes are summarized in chains. The genes of these chains
were contained in all genomes and were reconstructed for all
internal nodes in the indicated order.

The original complete cluster from [24] appeared in smaller
sub-clusters in the reconstruction. On the one hand, as already
discussed above, some of these separations were caused by
the preprocessing. A more sophisticated preprocessing, such
as an orthology assignment of duplicated genes based on this
result, would allow to find larger parts of the cluster. On the
other hand, some parts of the cluster were separated by several
intervening genes in some of the genome sequences. Fig. 11
shows the organization of the reconstructed chains in the input
sequences and in the reconstruction results for the internal
nodes. This may give hints on how the cluster evolved during
evolution and on the function of the intervening genes.

5 CONCLUSION
We have introduced a unified approach to model gene clusters
that allows to define a variety of different specific models.
Based on this abstract concept, we have defined the problem
of reconstructing sets of gene clusters at the inner nodes of
a given phylogenetic tree. The thereby optimized objective
function includes two criteria: consistency and parsimony. We
could show that it is always possible to find all (consistent) op-
tima using a branch and bound search starting with a (possibly
inconsistent) most parsimonious labeling. The presented exact
algorithm combines two phases. In the first phase a sparse
variant is used to find an optimum very quickly. In a second
phase, this result is used to speed up the dense variant, which
is more sensitive but still precise.

Due to the correctness of our algorithm, the evaluation of
our method refers to the characteristics of our definition of
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Mycobacterium tuberculosis H37Rv
3989 / 1718

Nocardia farcinica IFM 10152
5683 / 2272

Corynebacterium efficiens YS−314
2950 / 1399

Tropheryma whipplei str. Twist
808 / 464

Leifsonia xyli subsp. xyli str. CTCB07
2030 / 1005

Propionibacterium acnes KPA171202
2297 / 1175

Thermobifida fusca YX
3110 / 1447

Frankia sp. CcI3
2499 / 1854

Symbiobacterium thermophilum IAM 14863
3338 / 1645

Corynebacterineae

Micrococcineae

Actinomycetales

Bacteria

Total: 26704 / 13029
Average: 2967.1 / 1447.7

Fig. 10. The phylogenetic tree, names and lengths of the used COG sequences. The lengths are given for the original
sequences from the database, and for the preprocessed sequences: before/after preprocessing.

Mycobacterium tuberculosis H37Rv

Nocardia farcinica IFM 10152

Corynebacterium efficiens YS−314

Tropheryma whipplei str. Twist

Leifsonia xyli subsp. xyli str. CTCB07

Propionibacterium acnes KPA171202

Thermobifida fusca YX

Frankia sp. CcI3

Symbiobacterium thermophilum IAM 14863

Corynebacterineae

Micrococcineae

Actinomycetales

Bacteria

E D · C B · A

A · B C · D E

E D · C B · A

E · · · D · C B · A

E D C B · A

E D C B · A

A · B · C · · · D · · · E

A · B · · · C · · · D E

A · B · · · C · D · · · E

A

B

C

D E

B C D E

A

D E

B C

A

D E

B C

A

Fig. 11. The organization of the chains listed in Table 3. A dot between chains indicates that these chains are
separated by one gene. Three dots indicate a separation by more than one gene (in fact between three and thirty).

optimality. All results satisfy optimality. They span a big range
of sensitivity. However, all reconstructed labelings show a
high precision, i.e. most of the predictions are correct. This is
especially important if results are to be validated biologically,
as such analyses require high effort. A high precision makes
a biological verification more promising or feasible at all.

So far, our implementation includes adjacencies, common
intervals, and conserved intervals on permutations. Given a
single gene order for each leaf, it is trivial to compute the
corresponding labeling for each leaf, i.e. the set of all clusters
contained in the genome. This step can easily be generalized

to multichromosomal genomes by using the same computation
for each chromosome separately. An implementation of a gene
cluster model based on strings without multiplicity as defined
by Landau et al. [14] (i.e. allowing deletions of genes), or
based on circular permutations using PC-Trees [25] is readily
possible as well.

Further advanced extensions will include models based on
strings with multiplicity (i.e. allowing duplicated genes and
gene families). At first sight, the question of consistency might
become obsolete if we allow each gene to occur as often as
necessary: We could simply concatenate all clusters. However,
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TABLE 3
Adjacencies that were contained in all genomes and
reconstructed for all internal nodes. The overlapping

adjacencies are summarized in chains.

Chain COG number Product name
A 0051 ribosomal protein S10

0087 ribosomal protein L3
0088 ribosomal protein L4
0089 ribosomal protein L23

B 0185 ribosomal protein S19
0091 ribosomal protein L22
0092 ribosomal protein S3
0197 ribosomal protein L16/L10E
0255 ribosomal protein L29
0186 ribosomal protein S17

C 0093 ribosomal protein L14
0198 ribosomal protein L24
0094 ribosomal protein L5

D 0096 ribosomal protein S8
0097 ribosomal protein L6P/L9E
0256 ribosomal protein L18
0098 ribosomal protein S5
1841 ribosomal protein L30/L7E
0200 ribosomal protein L15

E 0201 preprotein translocase subunit SecY

this would yield longer and longer gene orders, the more
clusters are reconstructed. To avoid this artifact, we would
have to bound the multiplicity for each gene. This could
be done for each node in the tree by using the maximal
multiplicity of a gene in the descendent genomes.

Like most parsimony based approaches, our method suffers
from some weaknesses. A main drawback is the simple
weighting scheme. However, it is well known that edge and
character dependent weight functions can be added to the
model [26]. It remains to be seen if our results also apply
for such extensions. It is also arguable that all clusters are
weighted individually rather than considering whether a cluster
is lost completely or just split up into sub-clusters. But, in
fact, we do account for this implicitly if the sub-clusters are
contained in the model as well. Because either the cluster and
all its sub-clusters get lost (and increase the weight), or the
cluster and only a few sub-clusters get lost. Further research
might explore more sophisticated solutions.

Beside extending the models and the method, our main
focus in the future will be on the comparison of different
cluster models and the study of the evolution of gene clusters.
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