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Abstract

In comparative genomics, differences or similarities ofg@erders are de-
termined to predict functional relations of genes or phglogfic relations of
genomes. For this purpose, various combinatorial modelbeaised to spec-
ify gene clusters — groups of genes that are co-located in of gg=nomes.
Several approaches have been proposed to reconstrudv@atatestral gene
clusters based on the gene order of contemporary speciesp@valent and
natural reconstruction criterion é@nsistencyFor a set of reconstructed gene
clusters, there should exist a gene order that comprisgé/ah clusters. For
permutation-based gene cluster models, efficient methxdste verify this
condition.

In this paper, we discuss the consistency problem for diffegene clus-
ter models on sequences with restricted gene multiplgciti@ur results range
from linear-time algorithms for the simple modeladjacencieso NP-completeness
proofs for more complex models likmmmon intervals

*To appear in J. Comp. Biol., version of April 8, 2011.

fcorresponding author
IDepartment of Mathematics, Simon Fraser University, 888@v&fsity Drive, Burnaby, B.C.,
V5A 1S6, Canada,
2Technische Fakultat, Universitat  Bielefeld, 33594  Bieldf Germany,
{rwittler, stoye@techfak.uni-bielefeld.de, phone: +49 521 106-6882, fax49 4521 106-
6495
3Department of Computer Science, University of British Gohia, 201-2366 Main Mall, Vancou-
ver, B.C., V6T 1Z4, Canaddjmanuch, murraypQcs.ubc.ca, phone:+1 778 549 4587, fax: +1 604
8225485



1 Introduction

The exploration of the ancestral history of different speaan give valuable infor-
mation about their evolution. In whole-genome comparisasre commonly con-
siders the order of the genes or other markers within thergerio study changes
and similarities in the structure of different genomes.

One approach for the reconstruction of phylogenetic seesmar for the com-
parison of genomes is the examination of the genetic matamighe level of the
DNA, RNA or protein sequences. Another possibility is tadstthe genomic struc-
ture. On this higher level, one commonly considers the ooflére genes or other
markers within the genome. Genes belonging to the same geméy fare repre-
sented by the same identifier. To simplify matters, the tegané’ will be used
to refer to the corresponding gene family identifier. Onepd@rway to model
genomes is to use permutations. However, this approachdeslthe assumption
that every gene occurs exactly once in each considered genmallow for dupli-
cations and deletions, a relaxation to sequences of genesassary. A convenient
way to account for the orientation of a gene within the gen@te use signed per-
mutations or signed sequences, respectively.

Evolutionary processes can rearrange a gene order. Thecgemgosition of
some regions, however, is preserved and can be found inadegkted genomes.
These segments, denotedgae clustersoften contain functionally or evolution-
arily associated genes (Lawrence and Roth, 1996; Overliestk #999). Hence,
the analysis of gene clusters can give clues about the imotigenes and valuable
insights into evolutionary processes like rearrangememtgsses or lateral gene
transfer. Various formal definitions of gene clusters basedifferent models of
gene order have been discussed and analyzed in the lieer&ae Hoberman and
Durand (2005) and Bergeron et al. (2008) for surveys of difieconcepts of gene
clusters. Whenever the genomes of several species contipeisame gene clus-
ter, it was presumably inherited from a common ancestoreRestudies (Bergeron
etal., 2004; Adam et al., 2007; Chauve and Tannier, 200§eStod Wittler, 2009)
build on this idea to reconstruct ancient gene clusters amnufér ancient gene or-
ders. More precisely, the internal nodes of a given phylegerree are labeled
with sets of gene clusters, based on the gene orders of cpatamg species at
the leaves of the tree. Besides the pure identification of géursters, such recon-
structed scenarios for the origin of the clusters and theldpment of the gene
order can give valuable information about underlying etiohary processes, the
ancestral history of the species, and functional and elowiaty relations of genes.

Proposed reconstruction approaches differ in the undweylynodels for gene
order and gene clusters, and in the applied methodologyeMerya general aim is
to ensureonsistencyFor a set of putative ancient gene clusters, there shoustl ex
at least one gene order that comprises all given clusterer®ise, the reconstruc-
tion result would be inconsistent with respect to the genarodel.

The goal of reconstructing consistent labelings was fitsbduced by Bergeron
et al. (2004) who presented an algorithm that reconstrattsaf framed common
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intervals on permutations. Adam et al. (2007) applied thsip®ony principle as
an objective function to reconstruct common intervals ompeations. A heuris-
tic is used to reach consistency. Recently, Chauve and @a(2008) proposed a
methodology to reconstruct the gene order of the amniotergenbased on con-
sistent labelings of common intervals and adjacenciesutprevious work (Stoye
and Wittler, 2009), we introduced an algorithmical framekibat is not restricted
to a specific model but instead follows an oracle-based @gprto compute most
parsimonious consistent labelings for various models.

All of the above methods have been successfully appliecialsta and proven
to yield reasonable and valuable results. They all rely ompé&ation-based mod-
els, which enable efficient algorithms and data structurggarticular, the verifica-
tion of consistency can be translated to the well-stu@edsecutive Ones Problem
and be solved in polynomial time and space using data stesctike PQ-trees or
PC-trees (Booth and Lueker, 1976; Habib et al., 2000; HsQ22Bisu and Mc-
Connell, 2004). Some reconstruction approaches could &i¢y ealapted to the
model ofsequences without duplicationich allows genes to be missing in some
genomes but still requires each gene to occur at most on@ingenome.

In this paper, we discuss consistency $equence-basegene cluster models.
Particularly, we consider the simple modelawfjacenciesthe classical model of
common intervalgUno and Yagiura, 2000), and two variants of the latter. For
each of these models we address the problem: Given a set efajasters and
a maximum copy number for each gene, decide whether thesesexialid gene
order that contains all of the clusters. Our results ranga falgorithms that verify
consistency for adjacencies in linear time to the confiramatif NP-completeness
for the more complex models.

This paper extends a conference version presented at th©RBGatellite
workshop on Comparative Genomics (Wittler and Stoye, 20H@ye, we present
much stronger NP-hardness results, emphasizing the stiaplexity border be-
tween adjacencies and only slightly more relaxed modelg$adt) for two of the
models discussed, we rule out fixed-parameter-tractabiliny natural parameter,
and for a third model, only a small gap remains.

The paper has been organized in the following way. First, avenélly intro-
duce theConsistency Problemn Section 2. Then, in Section 3, we give an efficient
solution for the gene cluster model of both signed and umsigadjacencies. In
Section 4, we present NP-completeness results for the nebdelmmon intervals
and its variants before we finish with some discussions amdlasions in Sec-
tion 5.



2 The Consistency Problem

Assume a set of putative gene clusters, assigned to an ealgestie in a given
tree. These ancient clusters in turn imply a set of putath@emt genomes: all
those which contain all of the given clusters. Dependinghegene cluster model
used, this set of genomes can be empty if some of the clustersed from dif-
ferent contemporary species are in contradiction with rsth€or example, when
we model gene order as permutations, there is no valid geles oomprising the
three adjacenciefs, b}, {a, c} and{a,d}, because, according to the model, gene
a can only occur once and thus only be the neighbor of two oteres.

In a more general case, we represent genomss@sencesf genes or other
genomic markers. In a sequence, any element can occur fadiiies or not at all,
which, in the context of gene order comparison, corresptmgsralogous genes
and gene deletions, respectively.

If we allow each gene to appear arbitrarily often in any geepthe question
of consistency would become redundant: Any set of genearsiss consistent
since there is a valid gene order containing all assignestaais. For instance, we
can simply create a short sequence of genes according tockestar separately
and then concatenate these sequences to an absurd yetamdicdgler. Such a
construction is possible for any gene cluster model. As aegaence, consistency
always holds and does not contribute to a specification sbreable reconstruction
results.

Even if we replace the naive concatenation approach andadstonstruct
preferably compact valid gene orders, we cannot avoid ttudecsome genes
multiple times. In some cases, this causes side effectshelrexample given in
Figure 1, the classical parsimony principle is applied sig@sgene clusters to the
inner nodes of a given tree, minimizing the number of gairtslasses of clusters.
Although a gene is contained in all input genomes only orcis, ieconstructed
to occur multiple times for ancestral nodes. In this simpdeneple, we consider a
subsequence of only three genes in each input genome and alsiegment of five
genes for the examined internal node. In general, suclaetsgiimply unnaturally
long genomes for higher levels in the tree.

To preclude this unwanted effect, we refine the concept afistency. Instead
of simply restricting the total length of a genome, we lirhi¢ tmultiplicity of each
individual gene.

In the following problem definition, we intentionally refrafrom specifying a
concrete model of gene clusters and instead use the impmai®n of asequence
containing a cluster For instance, in the simple model of gene adjacencies, a
sequenceg containsa gene clustefa, b} if and only if the genes andb occur
adjacently ing.

Definition 1 (Consistency Problem)Let Gy := {1,..., N} be the set of genes

and letm : Gy — N assign a maximum copy number to each gene. Furthef; let
be a set of gene clusters. Thensistency problerns to decide ifC' is consistent
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with respect ton, i.e., whether there exists a sequencever Gy for which the
following properties hold:

(i) s contains each gengat mostm(g) times, and

(i) s contains all gene clusterse C.

Whenever we want to consider consistency as a reconstnuctiterion, we
have to provide a solution for the above problem. As we wil sethe following
sections, the problem complexity highly depends on theipetuster definition.

In our framework, we assume that the gene multiplicitiesgaven. Neverthe-
less, we want to sketch some ways to speeiffy) for the internal nodes in the
phylogenetic tree.

The thresholdn, for a leafl is obviously given by the input: We simply count
the occurrences of each gepen the gene order assigned tdo definem;,(g).
However, we have to determime, for the internal nodes.

For some specific datasets, we can rely on knowledge abogeti@mic his-
tory. For instance, several studies suggest two whole gerduplications in the
evolution of the Chordate genome in the teleost fishes lieédajllon et al., 2004).
Such information can be used to deduce the ancestral nurhgenes.

Otherwise, the most accurate but also elaborate approacidwe to deploy
gene-tree species-tree reconciliatiffage and Charleston, 1997) to reconstruct
the history of the genes in terms of speciation events, gapéoations and gene
losses. While less extensive and more suitable for our needéscould also utilize
approaches which do not require any further data or pre-ledye. Probability-
based methods (Csirés and Miklos, 2009) could be applieffeotively and re-
liably infer ancestral gene multiplicities, (¢) for all internal nodes, given the
copy number at the leaves. Or, we could apply the conceptrsefrpany and mini-
mize the amount of copy number differences. A less resta&olution is to define
the multiplicity of a gene for nodeu in a bottom-up fashion as the maximum over
the multiplicities of its child nodes, ..., vx: m,(g) :== Z_Erllaxk(mvi (9)) -

.....

Instead of performing a separate preprocessing step todithtesholds in ad-
vance, one could also try to include the gene multiplicitg ithe overall objective
of the reconstruction. However, in general, optimizingdarombination including
an original objective, consistency, and the gene copy numbeld be an intricate
task due to the strong interdependencies of the sub-eriteri

3 An Efficient Solution for Adjacencies

Probably the simplest formalization of co-localizationgenes is the concept of
adjacenciesi.e., pairs of directly neighboring genes. This elemantattern of
gene order conservation, also knowrgase pairor neighboring genesas been
widely used in whole genome comparison. Especially in thd ¢ gene order



reconstruction, this model is one of the most prevalent eptsc(Ma et al., 2006;
Bhutkar et al., 2007; Chauve and Tannier, 2008).

3.1 Unsigned Adjacencies

In the following, we formalize the concept of adjacencied @resent a method
to efficiently solve the consistency problem for adjacem@e sequences, i.e., to
decide if there exists a sequence that contains a set of gidgtencies while
considering each gengat mostm(g) times. To model the problem, we use a
graph theoretic approach.

Definition 2 (Unsigned Adjacencies on Sequenced)etGy := {1,..., N} be a
set of genes. An adjacengy, b} of the genesi,b € Gy is contained in a se-
guences overGy if and only ifa andb occur adjacently at least once in

Definition 3 (Gene Order Graph) LetGy = {1,..., N} be a set of genes ard
be a set of pairga, b} witha, b € Gy. Then, thegene order graph @f, denoted by
Gy (C), is the graph with the vertex sét, | g € Gy} and the edge set{v,, v,} |
{a,b} € C}.

The gene order graph of a set of adjacen€lesin be constructed (N + |C)
time and space. In this process, we keep track of the degreachf node),, de-
noted bydeg(v,). Then, the following lemma allows us to test for consistenioy’
in O(N + |C|) steps and thus in a total running time and with a space regeine
of O(N + |C).

Lemmal LetGy = {1,..., N} be a set of genes and let : Gy — N assign a
maximum copy number to each gene. Further(ldie a set of pairda, b} with
a,b € Gy andGy(C') = (V, E) be the gene order graph 6f. Then,C' is consistent
with respect ton if and only if the following conditions hold:

(i) deg(vy) < 2m(g) for all verticesv, € V, and

(i) > (2m(g) — deg(vy)) > 0 for each connected componerin Gy (C).

vgEC

Proof. Assume we have give@y, m, C' andGy(C) as required by the lemma.
We extend the gene order graply, = (V, F) to a multigraphHy = (V', E'),
where the new vertex set contains one additional ngdée., V' = V U {v}.
The multiset of edge&’ contains all edges i¥ with multiplicity one and further
auxiliary edges: For each vertex # v, with deg(v,) < 2m(g) we add the edge
{wvo, vy} with multiplicity 2m(g) — deg(v,) to E’.

If condition (i) of the lemma holds, then all nodes in the omta extended
graph have even degree: All vertices # v, are filled up to a degree @fn(g)
andv is incident to)", .\ (2m(g) — deg(v,)) = 32, oy 2m(g) — 2|C| edges.
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Further, condition (ii) implies that for each connected poment ofGy, in the
extended graph, at least one edge connects this subgraph tdence, Hy is
connected.

Conditions (i) and (ii) imply thatf y is Eulerian. That means, there is a closed
walk (Eulerian cycle) which contains all edges, especi#lé/edges of the original
gene order graph, exactly once. Since each ngdé v, has a degree &fm(g), it
is traversed exacthy:(g) times. Each such Eulerian path corresponds to a sequence
of genes that contains all adjacencieg€imnd each geng exactlym(g) times, as
exemplified in Figure 2. Thus, is consistent with respect io.

On the contrary, if condition (i) is not satisfied, there iseatst one gene that
is contained in more given adjacencies than its multiplieit ¢) allows. And, if
condition (ii) does not hold for any connected compongitie maximum number
of adjacencies of all genes inis exhausted and the genes cannot be put into a
linear order, i.e., a cycle containing, with the remaining genes. In both cases, the
existence of a valid gene order is precluded and, thus, stemsly is disproven(]

3.2 Signed Adjacencies

A slightly more sophisticated variant of the adjacency niaslenotivated by the
observation that the orientation of genes can play a rol®@iexpression and also
in gene order conservation (Huynen et al., 2001).

Definition 4 (Signed Adjacencies on Signed Sequencekgt Gy = {1,..., N}
be a set of genes. A signed adjacefieyb} of the genes, b € {g,—¢g | g € Gn}
is contained in a sequenceover Gy if and only ifa is directly followed by-b, or
b by —a at least once irs.

Note that the representation of a signed adjacency as adenear pair is accurate
since the definition of containedness does not depend orcthalassignment of
a andb.

Example 1 Consider the model of signed adjacencies Mr= 4. The signed
adjacency{2, —3} is contained in both sequences = (1,2,3,4) and sy =
(4,1, -3,—2). No other signed adjacencies of the geResnd 3 are contained
in any of the two sequences.

We transfer the general idea from the unsigned to the sigagel do this end,
we adjust the definition of the gene order graph. Now, eacle ges represented
by two nodes in the graph, where each such pair is connected pyedges.

Definition 5 (Signed Gene Order Graph) LetGy = {1,..., N} be asetof genes
and letm : Gy — N assign a maximum copy number to each gene. Further,
let C' be a set of pairda,b} with a,b € {g,—¢g | ¢ € Gn}. Then, thesigned
gene order graph af’, denoted byG3 (C), is the multigraph with the vertex set
{vg,v_4 | g € Gy} and the multiset of edges{v,, v_,} with multiplicitym(g) |

9 € Gn'} U {{vq, vs} with multiplicity one| {a,b} € C'}.
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Similarly to the unsigned case, we can construct the gragh M + |C|) time.

Lemma?2 LetGy = {1,..., N} be a set of genes and let : Gy — N assign a
maximum copy number to each gene. Furtherldte a set of signed adjacencies
{a,b} witha,b € {g,—¢g | g € Gn} andGy(C) = (V, E) be the signed gene order
graph of C. Then,C' is consistent with respect ta if and only if the following
conditions hold:

(i) deg(v,) <2m(|g|) for all verticesv, € V, and

(i) > (2m(|g|) — deg(vy)) > 0 for each connected componerih Gy (C).

vgEC

Proof. We proceed analogously to the unsigned case described proloé¢ of
Lemma 1: We extend the signed gene order gra@ph= (V. E) to a multigraph
H} = (V',E'), where the new vertex set contains one additional ngde.e.,

V' =V U{w}. The multiset of edges” contains all edges i@ with multiplicity

one and further auxiliary edges: For each verigx4 vy with deg(v,) < 2m(|g|)

we add the edgéuy, v, } with multiplicity 2m(|g|) — deg(v,) to E.

Then, again, the conditions (i) and (ii) of Lemma 2 imply tlkéseence of an Eu-
lerian path ind3, (C'). Butin this case, the correspondence of such a path to a valid
gene order is not trivial. When the pair of nodes represgrdgney is traversed
byapath...,v_gv,,...), thisrelates to a signed gene order. , g, . ..), whereas
a path(...,v,,v_g4,...) correlates to a signed gene order., —g,...). By defi-
nition, 43 (C) includesm(|g|) edges{v,, v_,}. An Eulerian cycle passes each of
these edges, but not necessarily in the above mentionedtmaight also be of the
form (vo, ..., vf,v_g, Vg, V_g,Vp,...,v0) With f # ¢g # h, which does not repre-
sent a signed gene order. In this casélg|) > 2 and due to the construction of the
extended graph, there ar€|g|) edges{v,, v_,} and at leastn(|g|) edges{v,, vy, }
with h # —g. Hence, the considered Eulerian cycle has to pass#oaigain in the
form... v, vy, v;,... Withi # —g # j, as shown in Figure 3(a). Without loss of
generality assume that. , vy, v_g,, vy, v_g, vp, . .. OCCUrS before. . v;, vy, v;, .. ..
However, whenever this situation arises, it is always gedb construct an al-
ternative Eulerian cycl€uvy, ..., vy, v_y, vy, Vi, ..., Vp, V_g, Vg, Vj, ..., V), S de-
picted in Figure 3(b). If these modifications are performeddil such improper-
ties, the obtained Eulerian cycle is proper in the senseithepresents a signed
gene ordef...,g,...,qg,...). Thus, conditions (i) and (ii) imply not only the ex-
istence of an Eulerian path but also the existence of a vajites gene order and
hence consistency ¢f with respect ton. The reverse direction of the lemma holds
analogously to Lemma 1. O

Based on the definition of a gene order graph, Lemmas 1 andv&pralgo-
rithms to solve the consistency problem on adjacencies gnesees in time and
space linear in the number of genes and in the number of gig@cencies. Both
the models and the lemmas can easily be modified to allow coglar gene order



or even several circular chromosomes. Only the connegtieguirement has to be
relaxed correspondingly.

4 NP-Completeness for Common Intervals

To find larger conserved regions, we now address a model far gesters that, in
contrast to adjacencies, generally spans more than twasgeoasmon intervals
segments of the genome containing the same set of genes rhiarg order but
not interrupted by other genes.

The terminterval stems from the original, mathematical problem statement.
There, a common interval is defined on a set of permutationshw, without loss
of generality, assumed to include the idenfity. . . , N') (otherwise all genes can be
renamed appropriately). In this case, a set of genes cantgyin all genomes has
to appear contiguously in the identity permutation as weadl thus be of the form
{9,9+1,...,g-+1}, which corresponds to an intenjal g + []. In our framework
however, a common interval is represented as an arbitréageswf genes.

The detection of common intervals conserved among severa grders is a
well studied problem. For details, we refer to the recenterg\of Bergeron et al.
(2008).

As already detailed in Introduction, common intervals wsuecessfully ap-
plied in ancestral gene order reconstruction (Adam et @D/2Chauve and Tan-
nier, 2008; Stoye and Wittler, 2009).

4.1 Basic Common Intervals

In line with other studies, we base our definition on the notidcharacter sets
which enables us to formalize the cluster model in a stréoghrd way. Since
we utilize this term for models on signed sequences latewerdirectly define it
for the general, signed case. Although, in our frameworkomroon interval is
defined on asingle gene order, we stick to the teroommonto not confuse the
reader familiar with this gene cluster model by redefining shme concept under
a different name.

Definition 6 (Character Set) Lets = (a4,...,a)) be a signed sequence. Then,
the character sebf s, denotedCS(s), is the set of all elements i1 CS(s) =

{|a| | a € {al,...,a‘ﬂ}}.

Definition 7 (Common Intervals on Sequences)etGy := {1,..., N} be a set
of genes. Then, a common interval Gy with |c| > 1 is contained in a sequence
s overGy if and only if s contains a substring’ such thatCS(s’) = c.

A common interval can occur multiple times in one genomethiarmore, one
occurrence of a common interval in a genome may contain sewecurrences of
the same gene, as illustrated by the following example.
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Example 2 Consider the above model fof = 6 and sequence= (5,4,2,1,2,3,6).
Then, the common intervél, 2, 3, 4} is contained irs as illustrated below, where
the corresponding substring is underlined:

(5,4,2,1,2,3,6).

Recall that we want to find an answer to the question: Givert afssommon
intervalsC' and a multiplicity threshold functiom, is there a valid gene order that
contains all elements @' and meets the restrictions imposed/hy As we will
show now, this problem is NP-complete.

Theorem 1 The consistency problem for common intervals on sequesdseB-
complete, even ihax{m(g)} = 2 andmax{|c| | c € C} = 3.

Before giving the proof, we would like to emphasize that ikithe strongest
possible result. If the maximum multiplicity would be onketproblem becomes
the polynomially solvable Consecutive Ones Problem (Bawtth Lueker, 1976).
If the maximum cluster size is restricted to two, this cooeesds to the model of
adjacencies, for which we gave a polynomial algorithm inghevious section.

Proof. One can easily formulate an algorithm that verifies a givéutsm, i.e., a
proper gene order, for correctness in polynomial time, Wisicows that the prob-
lem belongs to the complexity class NP.

We will show NP-hardness of the consistency problem on comimtervals by
reduction from 3SAT(3), which has been proven to be NP-cetedby Papadim-
itriou (1994). 3SAT(3) is a restricted version of 3SAT in whievery variable
has exactly two positive and one negative occurrence inltheses: The general
technique of the reduction is similar to that used infideh and Patterson (2010)
to prove NP-hardness for a generalized variant of the CamisecOnes Problem.
Please note that, in the rather abstract ambience of thas,pre will use the term
objectinstead ofgene

Given a 3SAT(3) formula with variablesX = {z1,...,z,} and clause¢’ =
{c1,..., e}, we construct an instancg, of the consistency problem for common
intervals on sequences consisting of at mast 2m objects of multiplicity at most
two and at mostn + 2m common intervals of size two or three for which a valid
sequence exists if and only if¢ is satisfiable.

For this instance of 3SAT(3), we say that a clauselectone of its literals in
a truth assignment af if this literal has valudrue in this assignment. Obviously,
a truth assignment af is a satisfying truth assignment if and only if every clause
selects at least one literal and for everg X, at most one of and—x is selected.

\We remark that the exact formulation of 3SAT(3) in Papadiimit (1994) allows also variables
with one negated and two positive occurrences, but theseasily be converted to the other type
of variables by replacing them with their negations in alludes. Clearly, this does not affect the
complexity of the problem.
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We design an instan@, of the consistency problem composed of clause gadgets
which will guarantee the first condition and variable gadgetich will ensure the
second condition.

For each 2-clause with literalsc; andc?, we add tC, the two objects; and

, each of multiplicity two, and the two object$ andc;™, each of multiplicity
one and the subsef§ = {c}, ¢?, ci} andS? = {c}, c*}. This is referred to as the
2-clause gadget

For each 3-clause with literals ¢}, ¢? and¢?, we add toC, the three objects
c},c? andc}, each with multiplicity 2, and the subsst = {c},c?,c}}. Thisis

AR

referred to as th8-clause gadget

Figure 4 shows graphical representations of these gadghtsh also high-
lights that an instance of the consistency problem for comintervals on se-
guences can be viewed as a hypergraph with a vertex for egett @nd a hyper-
edge for each common interval. A sequence that is consisiémthis instance is
then a collection of walks on this hypergraph tbatverseach hyperedge, that is,
for each hyperedgethere is a connected subwalk containing all and only vestice
in e, such that no vertex is visited more tham(v) times.

We say that a literal objeef is selectedn string s, if in s, ¢! is enclosed on
both the left and right side by at least one object of the dayaiget for clause.
Note that in both clause gadgets, at least one of its litdj@abs is selected in any
valid strings. For the 2- clause gadget, a valid stringpas to contain one of the
substrings:!, ¢2, ¢, ¢* or c2cl, ¢f, ¢i*, or one of their reversals. For the 3 clause

VR ) ZZ’Z’Z’

gadget a valid string has to contain one of the substringsc?, ¢ or ¢?, ¢}, ¢

or ¢}, c3,c2, or one of their reversals. Clearly, for each clause and eéthese
substrings, at least one literal of the clause is selected.

Now, all 3n literal objectsdf from the set of clause gadgets Orwill appear
in n variable gadgets described below. For each variableith the two positive

occurrences; andcf and the negative occurrencg, we already added t6, the

objectsc?, cf andc;, each of multiplicity two in the corresponding clause gadge
for the clauses containing and—z,. We further add t@, the two objects;, and
z, each of multiplicity one, and the four subsé¥s= {c?, ¢,z }, P? = {z},c]},

P} = {c '}, P = {c¢¢, 2/}, This is referred to as theariable gadgefor z,,
depicted in Figure 5.

We will show that the variable gadget for ensures that in a valid string literal
ck is never selected together with orc . Consider a valid stringwhere the literal
c) is selected. Since one copy @f is completely used up by its clause gadget,
must contain the substrinﬁ, Ly ey, cf or its reversal because it is the only way
to ensure consistency for subséls P/ and P} with the one remaining copy of
c). Since the above substring contains two occurrenceﬁ,dﬁeral cf cannot be
selected. If literak{ is also selected, then there is no way thaan be consistent
with P}, a contradiction to the fact thatis valid. It follows that ifC, has a valid
string s, theng is satisfiable.
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We now show that the converse holds, namelylifas a satisfying truth assign-
mentr, thenC, has a valid string. Givenr, we construct as follows.

For each clause, we pick one Iiterabjf with valuetruein 7. If ¢; is a 2-clause,
we create a substring ™', ¢/, ¢;, ¢* satisfyingS! andS?, and if it is a 3-clause, a
substringe/ ', ¢/, /! satisfyingS;, where the upper indices are taken modtilo
For any variabler, with the two positive occurrence$ and cf and the negative

occurrence;;:

1. if 7(z,) = falsg we create the substring$, ¢}, ¢, z}, ¢; andcg, 27, fulfill-
ing all P>**; and

2. if 7(zy) = true, we create the substrir‘@’,cg“,cz,a;;,cf,cg, fulfilling all
P€1’2’3’4.

The requirements imposed by all given common intervals alféléd. It re-
mains to be shown that the substrings can be merged to ong stifiat satisfies
the multiplicity restrictions as well. First, we should adhat each of the objects
with multiplicity one, ¢!, ¢*, x}, 7/, appears only in one of the created substrings,
and thus satisfies the multiplicity condition (no matter hbe substrings are con-
catenated). The objects with multiplicity two are only titeral objects. Since
each literal object is contained in exactly one clause gaalge exactly one vari-
able gadget, it appears exactly once in the clause subsamjat most twice in the
variable substrings. If a literal object appears only omcthe variable substrings,
then the multiplicity restriction for this object is satedi.

Consider a literal objeat that appears twice in the variable substrings. It is
either ¢ or cf, where ¢ and cf are positive occurrences of a variable and
7(z,) = false or ¢}, wherec] is the negative occurrence of a variableand
7(z,) = true. In any case, (a) one occurrenceodh the variable substrings is the
first or the last element of the variable substring; andb(bdnnot be picked in its
clause (as it ifalse), and thus appears as the first or the last element in theeclaus
substring that contains it. Consequently, the two suliriione clause and one
variable) can be merged to one by reusing the literal okjeand thus only two
copies ofo are used. Since each of these merges connects one clausengubrsd
one variable substring and each variable substring is usatimost one merge, it
follows that these merges cannot create a cycle.

Eventually, any concatenation of the remaining substryigjsls a strings that
is consistent witlC;. Thus if ¢ has a satisfying assignmentthenC, has a valid
string s.

Since the number of objects used in the construction is at mos- 2m, the
number of common intervals is at ma8t + 2m, and each common interval is of
size at most three, i.e., the construction is linear in the sf ¢, it can be built in
linear time, and hence the consistency problem on commenvais is NP-hard.

O
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4.2 Variants of Common Intervals

Besides its classical definition, there are different geliwations of common in-
tervals on sequences discussed in the literature, suciwaslow clusters (Fried-
man and Hughes, 2001; Durand and Sankoff, 2002), and maghgsters (He and
Goldwasser, 2005; Hoberman and Durand, 2005; Pasek e08b),2or approxi-
mate gene clusters (Rahmann and Klau, 2006; Bocker et &9)28ince the con-
sistency problem is NP-complete for basic common intepealg generalization is
NP-hard as well.

In contrast to generalizations, there are also other clustaels which are
restricted variants of common intervals. In the followingg will discuss such
models, in particular framed and nested common intervals.

Framed Common Intervals

This gene cluster model, common intervals framed by two gemeose orien-

tations have to be conserved, was first introduced on petionsaasconserved

intervals(Bergeron and Stoye, 2006). In gene order reconstructramedd com-

mon intervals on permutations was the first model to formsifte the problem
of finding putative ancestral sets of gene clusters prasgonsistency (Bergeron
et al., 2004).

Definition 8 (Framed Common Intervals on Signed Sequences) LetGy :=
{1,..., N} be a set of genes. A framed common inteffudlb] consists of two
extremitiesz andb with |al, |b| € Gy, and a set ofinner elements C Gy. We say
that [« 1 b] is contained in a signed sequengeif and only if, ins, a is followed

by b or —b is followed by—a, and the character set of the substring between the
extremities is equal té.

According to this definition, a gene can be an extremity anthaar element,
or even a left and right extremity at the same time. Apatrt ftbat, analogously to
basic common intervals, a cluster can occur multiple timesie genome, and one
gene can be contained several times in one cluster occerraadlustrated by the
following example.

Example 3 Consider the model of framed common intervals for= 6 and se-
quences = (5,4,—2,—1,2,—-3,6). Besides others, the framed common interval
[4{1,2} —3], is contained irs as illustrated by théox diagrambelow, where the
occurrences of the extremities and the inner elements arewsuded by rectangles:

s = (45, |+4,|-2, =1, +2, -3, |46 ).

The obvious relationship of basic and framed common interabows us to
infer an important correlation of these models with respette consistency prob-
lem: Any instance of this problem for common intervals canré@uced to an
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instance of framed common intervals. Based on this, we cdaagdethe following
statement.

Theorem 2 The consistency problem for framed common intervals oresige-
quences is NP-complete, evemiix{m(g)} = 2 andmax{|I| | [a I b] € C'} = 6.

Proof. Again, one can easily formulate an algorithm that verifie&vargsolution
for correctness in polynomial time, which shows that thebfgm belongs to the
complexity class NP.

NP-hardness is shown by reducing the basic common intarsatsin the proof
of Theorem 1 to framed common intervals.

The basic idea is to replace each common inteal= {e;,...,e,,} by a
framed common intervdb = [B {ey,...,en,...} B] containing, besides others,
the basic common interval as inner elements. Then, if theédchcommon inter-
vals allow for a valid gene ordey, there is a valid gene ordef for the original
instance on basic common intervals: We simply remove alllypaviroduced ob-
jects froms such that only the objects contained in the basic commonviaieare
leftin s’. Because the inner elements of all framed common intenaals to occur
contiguously ins, the objects of the basic common intervals occur contigyans
s,

Since the given basic common intervals used in the proof ebfém 1 overlap,
the framing elements have to be included into the set of irl@ments of overlap-
ping intervals. We use the following technique to ensurg thiénere is a valid gene
order for the basic common intervals, there is a valid gederdor the constructed
set of framed common intervals. Together with the argumetttie previous para-
graph, this will yield equivalence of the two instances @& tonsistency problem.

For each basic common intervBl = {ey, ..., e, } overlapping with intervals
By, ..., By, we create aframed common interidad= [B {e1,...,em, B1,..., B, B, . ..
containing the framing elements Bf, . . ., B, the framed common intervals con-

structed forB, ..., B;,. Note that this means that the framing elemeBtand B
also appear as inner element®to. . ., B,. All basic common intervals used in the
proof of Theorem 1 have the property that no common intesvat¢luded in an-
ther, and furthermore, in a valid gene order, an occurrehagiven basic common
interval can overlap with the occurrence of only one othesidaommon interval
on each side. Assume, the occurrence of sdmaverlaps withB; in ey, ..., ¢

on one side and witlB, in e,,.... e, on the other side. Then, we can extend
the substring that fulfill$3 to B, ey, ....e;, By, ..., B, er, ..., em, B. BetweenB,
and B, we include all remaining inner elements Bfin an arbitrary order. The
resulting substring fulfillsB and also allows a realization of the framed common
intervals created foB;, and B,. We can choose the orientation (the sign) of the
new objects in the string extension in accordance to the idefirof the framed
common intervals, e.g., positive in both. This extensiom lca performed for all
common intervals such that, finally, all framed common e are contained in
the extended, overall string.

14
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What remains to be shown is that such a construction is jesssing at most
six inner elements in each framed common interval, as wethasa maximum
multiplicity of two is sufficient.

To minimize the number of inner elements, we do not alwaysbadi framing
elements to all overlapping intervals. The structure ofdbmon intervals used
in the gadgets of the proof of Theorem 1 restricts the poslkrlaps of their
occurrences in a valid gene order. As can be seen in the pfodienrem 1, if
there is a valid sequence, we can construct one using ttoevialy orders (or their
reversals) of interval occurrences within the gadgets:

P}, P}, P} or P}, P}, P}, P}, andS;, S?.

Within the gadgetP? can only be followed by?}. We thus add®}? (but notP}) to
the inner elements @, ande,1 (but notP}) to those ofP;. Analogously, we add
P} toP? andP? to P}, P} toP; and P} to P}, P? to P} and P? to IP?, andS! to S?
andS?to S,

A 2-clause gadget; overlaps the gadgets of two variables, sayandz;. As
can be seen in the proof of Theorem 1, if there is a valid secpjeve can construct
one with one of the following orders (or their reversals)rdaérval occurrences:

1 2 1 2
P}, S, S;,or Pl S;, S

wherep, g € {2, 3,4}, depending on where it overlaps the variable gadgets. Thus,
we adds; to the inner elements @ andPy.

A 3-clause gadget; overlaps the gadgets of three variables, sgyr;, andz,
in the element}, ¢? andc?, respectively. As can be seen in the proof of Theorem 1,
if there is a valid sequence, we can construct one with onkeofdllowing orders
(or their reversals) of interval occurrences:

Py, S, Pl or P!.S;, P[] or Pj S P

wherep, ¢, € {2,3,4}, depending on where the variable gadgets are overlapped
by S;. We adds; to the inner elements dﬂf S; to the inner elements df; ands;
and.S; to the inner elements d,. This way, in any of the three cases, there is at
least one copy of each framing elemenSephvailable on both sides.

In summary, we reduce a given set of common intervals as ansbe iproof of
Theorem 1 to a set of framed common intervals with at mostsigi elements as
follows:

For the basic common intervaly-*** used in the variable gadget foy with
positive occurrences® and cf and negative occurrencg, we create the framed
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common intervals
e o, ]5427 P}, P/} P/,
?{a), ], P} PRy U T P,
P} {c],ck,Pé,Pé}UIVPZ] and
P,z P}y U I P}, where
{S,} if ©=1and|¢| =3,
. ) {5} if ©=2and|¢| =3,
") {S, S} if p=3and|¢| =3,
{81y if || =2

=[F,
=[P
= [
=

For the basic common interva“]ié’2 used in the 2-clause gadget torwe create
the framed common intervals

SE=[S ¢!, 2, ¢, 52, P(ch), P(¢?)} S} and

St =[S7 {¢}, ¢, 51} 57,
where we deflneD(cJ) to be the right framing element of the (uniqug) that
contains:’ andS! as inner elements:( can only be 2, 3 or 4).

For the basic common intervd] used as in the 3-clause gadgetdgmwe create

the framed common interval
[S {Cz ; Cz ) Cz ; P( ) P(sz)v p(c?)} gi]?

where we deflneD(cj) to be the right framing element of the (uniqu&) that
contalnsC7 andS; and/orS; as inner elements:( can only be 2, 3 or 4).

It remains to be shown that a maximum multiplicity of two fdrreewly added
elements suffices. This is true, because each new elememiusléd in the inner
elements of at most two intervals. In fact, we can assign diphiclty of one to
some of the objects. We definei(P') = m(P>**) = m(S?) = m(5?) = 1 and

m(PY) = m(P>4) = m(S;) = m(S,) = 2.

Since the number of objects used in the construction is at fos- 8m, the
number of framed common intervals is at mést+ 2m, and each framed common
interval contains at most six inner elements, i.e., thetwaoson is linear in the size
of ¢, it can be built in linear time, and hence the consistencplera on common
intervals is NP-hard. O

Please note that, again, for a maximum multiplicity of onglypomial solu-
tions exist. Framed common intervals with no inner elemanésequivalent to
signed adjacencies, for which we gave an efficient solutidowever, there is a
gap left for framed common intervals with one to five inneme¢aits. For these,
the complexity is still open.
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Nested Common Intervals

Hoberman and Durand (2005) discussed nestedness as alqesiperty of gene
clusters and proposed a first algorithm to identify respectiusters. Recently,
nested common intervaigere formally defined and studied in Blin et al. (2010),
and gave efficient algorithms to detect them in genomes redd®th as permuta-
tions and as sequences.

Definition 9 (Nested Common Intervals on Sequenced)et Gy = {1,..., N}
be a set of genes. The structure of a nested common interadireed recursively.
A nested common intervéd either

(i) an unordered pair of genega, b} with a # b, which is contained in a se-
guences overGy if and only ifa andb are adjacent ins, or

(i) an unordered paif{c, a} of a nested common intervabnd a gene:, which
is contained in a sequencef and only if, ins, a is adjacent to a substring
s of s such thatCS(c) = CS(s') andc is contained ins/,

where the character set of a nested common interval is thefsall contained
genes:CS({a,b}) := {a,b} andCS({c,a}) := CS(c) U {a}. Further, we define
the size of a cluster beinda, b}| := 2 and|{c, a}| := |c| + 1, respectively.

Similar to the other cluster models discussed above, artgcheemmon inter-
val may occur multiple times in one genome and one gene mayitaioed mul-
tiple times in the occurrence of a cluster in one genome. dgwlsly to framed
common intervals, one gene may be incorporated in the definitf one cluster
several times.

Example 4 Consider the model of nested common intervalsNor= 6 and se-
quences = (5,4,2,1,2,3,6). Then, besides others, the nested common interval
{{{2,3},1},4} is contained ins as illustrated below, where the occurrences of the

subclusters are indicated by lines:
(5,4,2,1,2.3,6).

In contrast,{{{1, 3},2}, 4} is not contained iry since, although geneis adjacent
to a substring with character sdftl, 2,3}, none of the occurrences of gees
adjacent to a substring with character st 3}.

Note that clustef{2, 3}, 3} is not contained iry, becauss is not adjacent to
a substring with character s¢, 3}, whereas clustef{1, 2}, 2} is contained irs:

(5,4,2,1,2,3,6).

) Y 2 )y =

Even the strict assumption of nestedness is not strong é@nougjlow an effi-
cient verification of consistency. In fact, similar to basammon intervals, there
is no gap left for fixed-parameter tractability in the corset parameters.

Theorem 3 The consistency problem for nested common intervals oresegs is
NP-complete, evenifiax{m(g)} = 2 andmax{|c| | c € C'} = 3.
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Proof. NP-hardness is proven by reduction from 3SAT(3) using a tcocson
very similar to that of Theorem 1. Given 3SAT(3) formulawe will again de-
sign an instanc€, of the consistency problem amestedcommon intervals on
sequences comprising of clause gadgets and a variabletgaddehen argue why
they simulate exactly this instange

For each 2-clause; with literals ¢} and¢?, we add toC, the two objects:;
and ¢Z, each of multiplicity two, and the objeet of multiplicity one, and the
nestedcommon intervalS! = {{c!,c?},¢}. The 2-clause gadget is depicted in
Figure 6(a).

For each 3-clause with literals ¢}, ¢? and¢?, we add toC, the three objects

cl, c? andc}, each with multiplicity two, the three objects, ¢Z andc?, each with
multlpI|C|ty one, the three objects, c? andé each with muItipIicity two and
the six nested common intervat§ = {{c!,cl},¢}, 82 = {{c?,&2},¢7}, 88 =
{{c3,e3), &), St = {ct, 2}, 97 = {e?,c3}, 88 = {cl, Z} The 3- clause gadget is
deplcted in Figure 6(b).

Note again that in both clause gadgets, at least one of t@llibbjects is
selected in any valid string For the 2-clause gadget, strisghas to contain
one of the substrings , ¢?, c; or ¢2, ¢}, ¢f, or one of their reversals, thus a literal
object is always selected in this case. In the 3-clause gadge literal object is
selected in string, i.e., s contains substringd, ¢/, ¢! (or their reversals) for every
q € {1,2,3}, there is only one remaining copy of for ¢ € {1,2,3} and hence
there is no way that can be consistent with all cﬂ’{4 56} simultaneously without
creating a cycle, a contradiction. Therefore at Ieast deeali object is selected in
this case as well.

For each variable:,, we will use the same construction as in the proof of
Theorem 1 with one exception that instead of the basic comimenval P} =
{c, ¢}, ,}, we use the nested common interyll = {{c?, ¢} },z}}, cf. Figure 7.

It follows by the same argument as in the proof of Theorem fitha valid string
¢, is never selected together with or cf. It follows that if C, has a valid string,
theng is satisfiable.

We now show that the converse holds, namelylifas a satisfying truth assign-
mentr, thenC, has a valid string. Givenr, we construct as follows.

For each clause, we pick one Iiterabjf with valuetruein 7. If ¢; is a 2-clause,
we create a substring ', ¢/, ¢* satisfyingS!, and if it is a 3-clause, substrings
() &, & et et e, (il c”l et @t and (i) ¢ el & satisfying
SZ.{1 S} where the upper indices are taken modulo 3. The clausegsmave the
same properties as the clause string in the proof of Theoresadh literal object
appears only once in the clause substrings and if a litejatbbas the valuélse
in 7 then it appears as the first or last element in one of the clsuisstrings. For
each variable:,, we create the same substrings satisfying’ait** as in the proof
of Theorem 1.

It can be easily checked that the requirements imposed gwalh nested com-
mon intervals are fulfilled. It follows by the same argumesirethe proof of Theo-
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rem 1 that the created substrings can be merged and coniesténta a valid string
s. Thus, if¢ has a satisfying assignmentthenC, has a valid string.

Since the number of objects used in this construction is &t mo+ 6m, the
number of nested common intervals is at most- 9m, and each nested common
interval is of size at most three, i.e., the constructiomisdr in the size od, it can
be built in linear time, and hence the consistency problernanmon intervals is
NP-hard. O

Further Variations and Restrictions

Our NP-completeness results also hold for further vametiaf the above models.

If we preclude a nested common interval to contain any genlépteutimes,
e.g., {{a,b},a}, or if we preclude any gene to be left and right extremity of a
framed common interval, e.glg I a], our proof techniques still apply and thus
NP-completeness still holds. Also, if we restrict any ocence of a common or
nested common interval within a genome to contain each gaheamce, NP-
completeness still holds.

Instead of restricting the multiplicity for each gene indivally, one could de-
fine a maximum total number of genes, i.e., a maximum genongghe But going
back to the NP-hardness proofs, we find that they also holdignmhodel. In the
proofs for basic and nested common intervals, each gevieh multiplicity m(g)
occurs in at leastm(g) — 1 intersecting gene clusters such that all “allowed” copies
of that gene are actually required. Thus, there is no fleigh@ft to use one gene
onlym(g;) — 1 times and another gene(g,) + 1 times. Also, the auxiliary genes
used in the proof for framed common intervals have all to lezliexactly as often
as specified. Hence, in all models, the proofs also hold W@!q m(g) is given
as an overall objective. This, in turn, directly implies Rrdness of the mini-
mization version of the consistency problem on these modsigen a set of gene
clusters, find a minimum-length sequence of genes that icw#l given clusters.

Since a typical prokaryotic genome consists of one circcifmomosome, we
are also interested in modeling gene order as circular segse In fact, based on
the above NP-completeness results, we can deduce NP-demgds of the consis-
tency problem for all the considered gene cluster modeldronlar sequences in
a straight forward fashion.

To redefine the cluster models, we allow any gene clusterpeapat the end
of a sequencg. . ., g4-1,9)4) Such that its occurrence can be continued at the
beginning of the sequence,, g, . . .), i.e., we assume circular gene orders.

Corollary 1 The consistency problem on circular sequences is NP-cdenfile

the gene cluster models of basic, framed and nested comiteowals for the max-
imum multiplicities and cluster sizes as stated in Theorea®s
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Proof. One can easily formulate an algorithm that verifies a givdatgm for
correctness in polynomial time, which shows that the proldbelongs to the com-
plexity class NP.

The consistency problem for the considered gene clusteelmaa linear se-
guences is NP-complete according to Theorems 1, 2 and 3.

Let the set of gene§, the set of cluster§’ and the multiplicity functionmn
define an instance of the consistency problem for basic,6daon nested common
intervals on linear sequences. Then, we reduce this instane problem instance
of the corresponding consistency problem on circular secgeein polynomial time
as follows:

* Gy =Gy U{N+1,N+2},

» (" := C U{c}, wherec is a gene cluster containing exactly the genes 1
andN+2 (the basic or nested common intery&+1, N+2}, or the framed
common interva|N+1 {} N +2], respectively),

em :=mU{N+1+— 1, N+2+—1}.

If C' is consistent with respect to, then there is a linear sequenge=
(aq,...,a;) satisfying the requirements of and containing all clusters ifi. Ob-
viously, the circular sequencg := (ay,...,a;, N+1, N +2) also contains all
clusters inC' and cluster: and satisfies the requirementsof.

Now, we show the opposite implication: @’ is consistent with respect to
m/, then there is a circular sequenge= (ay,...,a;, N+1, N+2) satisfying the
requirements ofn’ and containing all clusters i@@’. Since no cluster i’ spans
the genesvV+1 and N+-2, the linear sequencgg:= (a4, . . ., a;) contains all clusters
in C’ except fore, i.e., all clusters irC', and satisfies the requirementsef [

So far, we only considered genomes composed of one chroneogesralready
mentioned in Section 3, the algorithm presented for adesrtan easily be modi-
fied to handle several chromosomes—Iinear or circular. AlsoNP-completeness
results hold for several linear chromosomes. In fact, tloofsrare based on the
construction of several substrings which could be kept pars¢e chromosomes in-
stead of concatenating them to one string. In contrast,rivaf pf the latter lemma
builds on exactly one circular chromosome. It is open whellfe-completeness
holds for the case of several circular chromosomes for thextels.

5 Conclusion

In this paper, we have discussed the consistency problenthe problem of decid-
ing whether there exists a valid gene order comprising angset of gene clusters.
We have discussed this question for different gene clustatetls on sequences
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with restricted gene multiplicities. In summary, we idéetl a strict border be-
tween gene cluster models for which we can verify consisteificiently and

those for which we cannot. The complexity rises drasticttyn linear time for

adjacencies to NP-hard for more general cluster models, iétleey are strongly
restricted.

This raises the question for a sequence-based gene clustil that, on the
one hand, allows some degree of flexibility and, on the othadhoffers a polynomial-
time algorithm to verify consistency. The integration o€lswa model into any of
the existing reconstruction methods could increase seigitActually, first re-
sults on both simulated and real data indicate that withgmsnts of conserved
gene content, the order of the genes is conserved almodiyefafttier, 2010).
Thus, a model covering only single missing or additionaleggror the reversal of
two neighboring genes could already enhance reconstructgults strongly.

On permutations, the consistency problem for common iateng the consec-
utive ones property (C1P) problem (Booth and Lueker, 197&hibiet al., 2000;
Hsu, 2002; Hsu and McConnell, 2004). Thus, one approachinbhtdes addi-
tional or missing genes is to relax the condition of the conteity of the ones
of each row, by allowing gaps, with some restriction on theireaof these gaps.
The question is then to decide if there is an ordering of thenons that satisfies
these relaxed C1P conditions. In Goldberg et al. (1995)atiteors introduced the
k-consecutive-ones property-C1P): Decide if the columns of a binary matrix can
be permuted such that each row contains at maidsibcks. This problem is NP-
complete for every: > 2 (Goldberg et al., 1995), and also minimizing the number
of gaps in the entire matrix is NP-complete even if each rowhtd matrix has at
most two ones (Haddadi, 2002).

In the spirit of this approach, Chauve et al. (2009) defineggtigped C1P: given
two integersk andd, a binary matrix)/ has the(k, 0)-C1P if its columns can be
permuted such that each row contains at ntostocks and no gap larger than
While they show that such a property can be decided in polyaletime when the
number of ones in each row a@f is bounded, they show that the general case is
hard. In particular, they show forall > 2,6 > 1, (k, ) # (2,1) that the(k, J)-
C1P is NP-complete. So indeed, in this case, aside from tiggesbpen case of the
complexity of the (2,1)-C1P, there is also a strict compiekiorder between the
classical C1P ((1,0)-C1P in the gapped C1P context) andelaged model.

In Manuch and Patterson (2010), the authors show also for binatyices
of bounded degreé€ that thek-C1P is NP-complete even wheh = 3, which
is quite suprising, as this is the weakest form of conseitutrequirement: in
each row, only two of the ones must be adjacent. This is shoitim an NP-
completeness construction based on finding a collectioratfsnon a hypergraph
H that coverseach hyperedge ii/, a technique that inspired some of the NP-
completeness constructions in this work.

We implemented the gene order graph to model adjacenciesquesces and
integrated this gene cluster model into our unified recocstsn framework, pre-
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sented in Stoye and Wittler (2009), available from the weddsibi ser v. t echf ak.
uni - bi el ef el d. de/ rococo/ . An elaborate description of the method and
the results can be found in Wittler (2010). We refrain frormpaing detailed re-
sults here because these are concerned more with the nemiast method than
with the general concept of consistency discussed in tipspa\evertheless, we
would like to mention the following overall findings. Simtitans showed that es-
timating the gene multiplicities using the simple maximupp®@ach does not sig-
nificantly decrease the accuracy of the reconstruction emetpto using the “real”
simulated copy numbers. Furthermore, we applied our methgenomic data of
Corynebacteria using different gene cluster models: Comim@rvals on permu-
tations and adjacencies on sequences. A comparison ofghksresvealed a large
overlap. Nevertheless, many conserved segments couldendientified by either
of the approaches. This highlights the importance of stuglgene cluster recon-
struction with respect to different, especially flexiblegaels for gene clusters and
the relaxed model of sequences for gene order.
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2,13,

= {1,2},{1,3

21,4, -

= {1,2},{1,4} '

3,14, [1,31=>...,2,1,3,...,1,4,...
= {1,3},{1,4} 1,4

Figure 1: Example for an artifact that arises when gene @tssire reconstructed
on the basis of gene orders, where any gene can occur atpiotien. A small
subtree over three genomes is shown exemplarily. The geleesoon the leaves
imply, beside others, the listed adjacencies. Any mosiparsious labeling would
assign all three adjacencies to the lowermost internal nogdaying at least two
copies of gend. Since genes are allowed to appear multiple times in a genome
valid gene orders exist, all of which contain gdret least two times — for instance
the given gene order.
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Figure 2: An example to illustrate the proof of Lemma 1. Cdesthe set of genes
Gr with the multiplicitiesm(g) = 2 for ¢ € {2,5} and otherwisen(g) = 1,
and the seC' = {{1,2}, {1,3}, {2,3}, {2,4}, {5,6}, {5,7}, {6,7}} of un-
signed adjacencies. The gene order gr&pC') is depicted including the ex-
tensions described in the proof. The solid edges correspmtite original edges
as defined by the given adjacencies, and the dashed linessegprthe auxiliary
edges. The obtained extended graph contains, for instaineeiulerian cycle
(vo, Vo, V1, V3, V2, Vg, Vg, Vs, Vg, U7, Vs, Vo), Which corresponds to the valid gene or-
der(2,1,3,2,4,5,6,7,5).
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Figure 3: lllustration of the relation of improper and projailerian cycles in an
extended signed gene order graph as described in the prbehuha 2.
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(b)

Figure 4: Graphical representations of the (a) 2-claus@efadnd (b) 3-clause
gadget for clause;. The multiplicity of the objects is indicated by the number
of dots. Common intervals are depicted by ellipses surrmgntivo or triangles
surrounding three objects, respectively.
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Figure 5: Graphical representation of the variable gadwetdriablex, with posi-
tive occurrences;’ andc§j and negated occurrenegin the clauses.
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(a) (b)

Figure 6: Graphical representations of the (a) 2-claus@efadnd (b) 3-clause
gadget for clause; in the nested common intervals case. The dark shaded ovals
depict the nested part of nested intervals of size 3.
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Figure 7: Graphical representation of the variable gadgetdriabler, with pos-
itive occurrences;’ andcf and negated occurrenegin the clauses in the nested
common intervals case.

32



