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Abstract

In comparative genomics, differences or similarities of gene orders are de-
termined to predict functional relations of genes or phylogenetic relations of
genomes. For this purpose, various combinatorial models can be used to spec-
ify gene clusters — groups of genes that are co-located in a set of genomes.
Several approaches have been proposed to reconstruct putative ancestral gene
clusters based on the gene order of contemporary species. One prevalent and
natural reconstruction criterion isconsistency: For a set of reconstructed gene
clusters, there should exist a gene order that comprises allgiven clusters. For
permutation-based gene cluster models, efficient methods exist to verify this
condition.

In this paper, we discuss the consistency problem for different gene clus-
ter models on sequences with restricted gene multiplicities. Our results range
from linear-time algorithms for the simple model ofadjacenciesto NP-completeness
proofs for more complex models likecommon intervals.
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1 Introduction

The exploration of the ancestral history of different species can give valuable infor-
mation about their evolution. In whole-genome comparison,one commonly con-
siders the order of the genes or other markers within the genome to study changes
and similarities in the structure of different genomes.

One approach for the reconstruction of phylogenetic scenarios or for the com-
parison of genomes is the examination of the genetic material on the level of the
DNA, RNA or protein sequences. Another possibility is to study the genomic struc-
ture. On this higher level, one commonly considers the orderof the genes or other
markers within the genome. Genes belonging to the same gene family are repre-
sented by the same identifier. To simplify matters, the term ‘gene’ will be used
to refer to the corresponding gene family identifier. One simple way to model
genomes is to use permutations. However, this approach includes the assumption
that every gene occurs exactly once in each considered genome. To allow for dupli-
cations and deletions, a relaxation to sequences of genes isnecessary. A convenient
way to account for the orientation of a gene within the genomeis to use signed per-
mutations or signed sequences, respectively.

Evolutionary processes can rearrange a gene order. The genecomposition of
some regions, however, is preserved and can be found in several related genomes.
These segments, denoted asgene clusters, often contain functionally or evolution-
arily associated genes (Lawrence and Roth, 1996; Overbeek et al., 1999). Hence,
the analysis of gene clusters can give clues about the function of genes and valuable
insights into evolutionary processes like rearrangement processes or lateral gene
transfer. Various formal definitions of gene clusters basedon different models of
gene order have been discussed and analyzed in the literature. See Hoberman and
Durand (2005) and Bergeron et al. (2008) for surveys of different concepts of gene
clusters. Whenever the genomes of several species comprisethe same gene clus-
ter, it was presumably inherited from a common ancestor. Recent studies (Bergeron
et al., 2004; Adam et al., 2007; Chauve and Tannier, 2008; Stoye and Wittler, 2009)
build on this idea to reconstruct ancient gene clusters and to infer ancient gene or-
ders. More precisely, the internal nodes of a given phylogenetic tree are labeled
with sets of gene clusters, based on the gene orders of contemporary species at
the leaves of the tree. Besides the pure identification of gene clusters, such recon-
structed scenarios for the origin of the clusters and the development of the gene
order can give valuable information about underlying evolutionary processes, the
ancestral history of the species, and functional and evolutionary relations of genes.

Proposed reconstruction approaches differ in the underlying models for gene
order and gene clusters, and in the applied methodology. However, a general aim is
to ensureconsistency: For a set of putative ancient gene clusters, there should exist
at least one gene order that comprises all given clusters. Otherwise, the reconstruc-
tion result would be inconsistent with respect to the genomemodel.

The goal of reconstructing consistent labelings was first introduced by Bergeron
et al. (2004) who presented an algorithm that reconstructs sets of framed common
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intervals on permutations. Adam et al. (2007) applied the parsimony principle as
an objective function to reconstruct common intervals on permutations. A heuris-
tic is used to reach consistency. Recently, Chauve and Tannier (2008) proposed a
methodology to reconstruct the gene order of the amniote genome, based on con-
sistent labelings of common intervals and adjacencies. In our previous work (Stoye
and Wittler, 2009), we introduced an algorithmical framework that is not restricted
to a specific model but instead follows an oracle-based approach to compute most
parsimonious consistent labelings for various models.

All of the above methods have been successfully applied to real data and proven
to yield reasonable and valuable results. They all rely on permutation-based mod-
els, which enable efficient algorithms and data structures.In particular, the verifica-
tion of consistency can be translated to the well-studiedConsecutive Ones Problem
and be solved in polynomial time and space using data structures like PQ-trees or
PC-trees (Booth and Lueker, 1976; Habib et al., 2000; Hsu, 2002; Hsu and Mc-
Connell, 2004). Some reconstruction approaches could be easily adapted to the
model ofsequences without duplicationswhich allows genes to be missing in some
genomes but still requires each gene to occur at most once in each genome.

In this paper, we discuss consistency forsequence-basedgene cluster models.
Particularly, we consider the simple model ofadjacencies, the classical model of
common intervals(Uno and Yagiura, 2000), and two variants of the latter. For
each of these models we address the problem: Given a set of gene clusters and
a maximum copy number for each gene, decide whether there exists a valid gene
order that contains all of the clusters. Our results range from algorithms that verify
consistency for adjacencies in linear time to the confirmation of NP-completeness
for the more complex models.

This paper extends a conference version presented at the RECOMB satellite
workshop on Comparative Genomics (Wittler and Stoye, 2010). Here, we present
much stronger NP-hardness results, emphasizing the strictcomplexity border be-
tween adjacencies and only slightly more relaxed models. Infact, for two of the
models discussed, we rule out fixed-parameter-tractability in any natural parameter,
and for a third model, only a small gap remains.

The paper has been organized in the following way. First, we formally intro-
duce theConsistency Problemin Section 2. Then, in Section 3, we give an efficient
solution for the gene cluster model of both signed and unsigned adjacencies. In
Section 4, we present NP-completeness results for the modelof common intervals
and its variants before we finish with some discussions and conclusions in Sec-
tion 5.
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2 The Consistency Problem

Assume a set of putative gene clusters, assigned to an ancestral node in a given
tree. These ancient clusters in turn imply a set of putative ancient genomes: all
those which contain all of the given clusters. Depending on the gene cluster model
used, this set of genomes can be empty if some of the clusters derived from dif-
ferent contemporary species are in contradiction with others. For example, when
we model gene order as permutations, there is no valid gene order comprising the
three adjacencies{a, b}, {a, c} and{a, d}, because, according to the model, gene
a can only occur once and thus only be the neighbor of two other genes.

In a more general case, we represent genomes assequencesof genes or other
genomic markers. In a sequence, any element can occur multiple times or not at all,
which, in the context of gene order comparison, correspondsto paralogous genes
and gene deletions, respectively.

If we allow each gene to appear arbitrarily often in any genome, the question
of consistency would become redundant: Any set of gene clusters is consistent
since there is a valid gene order containing all assigned clusters. For instance, we
can simply create a short sequence of genes according to eachcluster separately
and then concatenate these sequences to an absurd yet valid gene order. Such a
construction is possible for any gene cluster model. As a consequence, consistency
always holds and does not contribute to a specification of reasonable reconstruction
results.

Even if we replace the naive concatenation approach and instead construct
preferably compact valid gene orders, we cannot avoid to include some genes
multiple times. In some cases, this causes side effects. In the example given in
Figure 1, the classical parsimony principle is applied to assign gene clusters to the
inner nodes of a given tree, minimizing the number of gains and losses of clusters.
Although a gene is contained in all input genomes only once, it is reconstructed
to occur multiple times for ancestral nodes. In this simple example, we consider a
subsequence of only three genes in each input genome and obtain a segment of five
genes for the examined internal node. In general, such artifacts imply unnaturally
long genomes for higher levels in the tree.

To preclude this unwanted effect, we refine the concept of consistency. Instead
of simply restricting the total length of a genome, we limit the multiplicity of each
individual gene.

In the following problem definition, we intentionally refrain from specifying a
concrete model of gene clusters and instead use the imprecise notion of asequence
containing a cluster. For instance, in the simple model of gene adjacencies, a
sequenceg containsa gene cluster{a, b} if and only if the genesa andb occur
adjacently ing.

Definition 1 (Consistency Problem)Let GN := {1, . . . , N} be the set of genes
and letm : GN → N assign a maximum copy number to each gene. Further, letC

be a set of gene clusters. Theconsistency problemis to decide ifC is consistent
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with respect tom, i.e., whether there exists a sequences overGN for which the
following properties hold:

(i) s contains each geneg at mostm(g) times, and

(ii) s contains all gene clustersc ∈ C.

Whenever we want to consider consistency as a reconstruction criterion, we
have to provide a solution for the above problem. As we will see in the following
sections, the problem complexity highly depends on the specific cluster definition.

In our framework, we assume that the gene multiplicities aregiven. Neverthe-
less, we want to sketch some ways to specifym(g) for the internal nodes in the
phylogenetic tree.

The thresholdml for a leafl is obviously given by the input: We simply count
the occurrences of each geneg in the gene order assigned tol to defineml(g).
However, we have to determinemv for the internal nodes.

For some specific datasets, we can rely on knowledge about thegenomic his-
tory. For instance, several studies suggest two whole genome duplications in the
evolution of the Chordate genome in the teleost fishes lineage (Jaillon et al., 2004).
Such information can be used to deduce the ancestral number of genes.

Otherwise, the most accurate but also elaborate approach would be to deploy
gene-tree species-tree reconciliation(Page and Charleston, 1997) to reconstruct
the history of the genes in terms of speciation events, gene duplications and gene
losses. While less extensive and more suitable for our needs, one could also utilize
approaches which do not require any further data or pre-knowledge. Probability-
based methods (Csűrös and Miklós, 2009) could be applied toeffectively and re-
liably infer ancestral gene multiplicitiesmv(g) for all internal nodesv, given the
copy number at the leaves. Or, we could apply the concept of parsimony and mini-
mize the amount of copy number differences. A less restrictive solution is to define
the multiplicity of a geneg for nodeu in a bottom-up fashion as the maximum over
the multiplicities of its child nodesv1, . . . , vk : mu(g) := max

i=1,...,k

(

mvi
(g)

)

.

Instead of performing a separate preprocessing step to fix the thresholds in ad-
vance, one could also try to include the gene multiplicity into the overall objective
of the reconstruction. However, in general, optimizing fora combination including
an original objective, consistency, and the gene copy number would be an intricate
task due to the strong interdependencies of the sub-criteria.

3 An Efficient Solution for Adjacencies

Probably the simplest formalization of co-localization ofgenes is the concept of
adjacencies, i.e., pairs of directly neighboring genes. This elementary pattern of
gene order conservation, also known asgene pairsor neighboring genes, has been
widely used in whole genome comparison. Especially in the field of gene order
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reconstruction, this model is one of the most prevalent concepts (Ma et al., 2006;
Bhutkar et al., 2007; Chauve and Tannier, 2008).

3.1 Unsigned Adjacencies

In the following, we formalize the concept of adjacencies and present a method
to efficiently solve the consistency problem for adjacencies on sequences, i.e., to
decide if there exists a sequence that contains a set of givenadjacencies while
considering each geneg at mostm(g) times. To model the problem, we use a
graph theoretic approach.

Definition 2 (Unsigned Adjacencies on Sequences)Let GN := {1, . . . , N} be a
set of genes. An adjacency{a, b} of the genesa, b ∈ GN is contained in a se-
quences overGN if and only ifa andb occur adjacently at least once ins.

Definition 3 (Gene Order Graph) LetGN = {1, . . . , N} be a set of genes andC
be a set of pairs{a, b} with a, b ∈ GN . Then, thegene order graph ofC, denoted by
GN(C), is the graph with the vertex set{vg | g ∈ GN} and the edge set

{

{va, vb} |
{a, b} ∈ C

}

.

The gene order graph of a set of adjacenciesC can be constructed inO(N + |C|)
time and space. In this process, we keep track of the degree ofeach nodevg, de-
noted bydeg(vg). Then, the following lemma allows us to test for consistencyof C

in O(N + |C|) steps and thus in a total running time and with a space requirement
of O(N + |C|).

Lemma 1 Let GN = {1, . . . , N} be a set of genes and letm : GN → N assign a
maximum copy number to each gene. Further, letC be a set of pairs{a, b} with
a, b ∈ GN andGN(C) = (V, E) be the gene order graph ofC. Then,C is consistent
with respect tom if and only if the following conditions hold:

(i) deg(vg) ≤ 2m(g) for all verticesvg ∈ V , and

(ii)
∑

vg∈c

(

2m(g) − deg(vg)
)

> 0 for each connected componentc in GN(C).

Proof. Assume we have givenGN , m, C andGN(C) as required by the lemma.
We extend the gene order graphGN = (V, E) to a multigraphHN = (V ′, E ′),
where the new vertex set contains one additional nodev0, i.e., V ′ = V ∪ {v0}.
The multiset of edgesE ′ contains all edges inE with multiplicity one and further
auxiliary edges: For each vertexvg 6= v0 with deg(vg) < 2m(g) we add the edge
{v0, vg} with multiplicity 2m(g) − deg(vg) to E ′.

If condition (i) of the lemma holds, then all nodes in the obtained extended
graph have even degree: All verticesvg 6= v0 are filled up to a degree of2m(g)
andv0 is incident to

∑

vg∈V

(

2m(g) − deg(vg)
)

=
∑

vg∈V 2m(g) − 2|C| edges.
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Further, condition (ii) implies that for each connected component ofGN , in the
extended graph, at least one edge connects this subgraph tov0. Hence,HN is
connected.

Conditions (i) and (ii) imply thatHN is Eulerian. That means, there is a closed
walk (Eulerian cycle) which contains all edges, especiallythe edges of the original
gene order graph, exactly once. Since each nodevg 6= v0 has a degree of2m(g), it
is traversed exactlym(g) times. Each such Eulerian path corresponds to a sequence
of genes that contains all adjacencies inC and each geneg exactlym(g) times, as
exemplified in Figure 2. Thus,C is consistent with respect tom.

On the contrary, if condition (i) is not satisfied, there is atleast one geneg that
is contained in more given adjacencies than its multiplicity m(g) allows. And, if
condition (ii) does not hold for any connected componentc, the maximum number
of adjacencies of all genes inc is exhausted and the genes cannot be put into a
linear order, i.e., a cycle containingv0, with the remaining genes. In both cases, the
existence of a valid gene order is precluded and, thus, consistency is disproven.�

3.2 Signed Adjacencies

A slightly more sophisticated variant of the adjacency model is motivated by the
observation that the orientation of genes can play a role in co-expression and also
in gene order conservation (Huynen et al., 2001).

Definition 4 (Signed Adjacencies on Signed Sequences)Let GN := {1, . . . , N}
be a set of genes. A signed adjacency{a, b} of the genesa, b ∈ {g,−g | g ∈ GN}
is contained in a sequences overGN if and only ifa is directly followed by−b, or
b by−a at least once ins.

Note that the representation of a signed adjacency as an unordered pair is accurate
since the definition of containedness does not depend on the actual assignment of
a andb.

Example 1 Consider the model of signed adjacencies forN = 4. The signed
adjacency{2,−3} is contained in both sequencess1 = (1, 2, 3, 4) and s2 =
(4, 1,−3,−2). No other signed adjacencies of the genes2 and 3 are contained
in any of the two sequences.

We transfer the general idea from the unsigned to the signed case. To this end,
we adjust the definition of the gene order graph. Now, each gene g is represented
by two nodes in the graph, where each such pair is connected bym(g) edges.

Definition 5 (Signed Gene Order Graph) LetGN = {1, . . . , N} be a set of genes
and letm : GN → N assign a maximum copy number to each gene. Further,
let C be a set of pairs{a, b} with a, b ∈ {g,−g | g ∈ GN}. Then, thesigned
gene order graph ofC, denoted byGs

N(C), is the multigraph with the vertex set
{vg, v−g | g ∈ GN} and the multiset of edges

{

{vg, v−g} with multiplicitym(g) |
g ∈ GN

}

∪
{

{va, vb} with multiplicity one| {a, b} ∈ C
}

.
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Similarly to the unsigned case, we can construct the graph inO(N + |C|) time.

Lemma 2 Let GN = {1, . . . , N} be a set of genes and letm : GN → N assign a
maximum copy number to each gene. Further, letC be a set of signed adjacencies
{a, b} with a, b ∈ {g,−g | g ∈ GN} andGs

N(C) = (V, E) be the signed gene order
graph ofC. Then,C is consistent with respect tom if and only if the following
conditions hold:

(i) deg(vg) ≤ 2m(|g|) for all verticesvg ∈ V , and

(ii)
∑

vg∈c

(

2m(|g|) − deg(vg)
)

> 0 for each connected componentc in Gs
N(C).

Proof. We proceed analogously to the unsigned case described in theproof of
Lemma 1: We extend the signed gene order graphGs

N = (V, E) to a multigraph
Hs

N = (V ′, E ′), where the new vertex set contains one additional nodev0, i.e.,
V ′ = V ∪ {v0}. The multiset of edgesE ′ contains all edges inE with multiplicity
one and further auxiliary edges: For each vertexvg 6= v0 with deg(vg) < 2m(|g|)
we add the edge{v0, vg} with multiplicity 2m(|g|)− deg(vg) to E ′.

Then, again, the conditions (i) and (ii) of Lemma 2 imply the existence of an Eu-
lerian path inHs

N(C). But in this case, the correspondence of such a path to a valid
gene order is not trivial. When the pair of nodes representing geneg is traversed
by a path(. . . , v−g, vg, . . .), this relates to a signed gene order(. . . , g, . . .), whereas
a path(. . . , vg, v−g, . . .) correlates to a signed gene order(. . . ,−g, . . .). By defi-
nition, Hs

N(C) includesm(|g|) edges{vg, v−g}. An Eulerian cycle passes each of
these edges, but not necessarily in the above mentioned way.It might also be of the
form (v0, . . . , vf , v−g, vg, v−g, vh, . . . , v0) with f 6= g 6= h, which does not repre-
sent a signed gene order. In this case,m(|g|) ≥ 2 and due to the construction of the
extended graph, there arem(|g|) edges{vg, v−g} and at leastm(|g|) edges{vg, vh}
with h 6= −g. Hence, the considered Eulerian cycle has to pass nodevg again in the
form . . . , vi, vg, vj, . . . with i 6= −g 6= j, as shown in Figure 3(a). Without loss of
generality assume that. . . , vf , v−g, vg, v−g, vh, . . . occurs before. . . , vi, vg, vj , . . ..
However, whenever this situation arises, it is always possible to construct an al-
ternative Eulerian cycle(v0, . . . , vf , v−g, vg, vi, . . . , vh, v−g, vg, vj , . . . , v0), as de-
picted in Figure 3(b). If these modifications are performed for all such improper-
ties, the obtained Eulerian cycle is proper in the sense thatit represents a signed
gene order(. . . , g, . . . , g, . . .). Thus, conditions (i) and (ii) imply not only the ex-
istence of an Eulerian path but also the existence of a valid signed gene order and
hence consistency ofC with respect tom. The reverse direction of the lemma holds
analogously to Lemma 1. �

Based on the definition of a gene order graph, Lemmas 1 and 2 provide algo-
rithms to solve the consistency problem on adjacencies on sequences in time and
space linear in the number of genes and in the number of given adjacencies. Both
the models and the lemmas can easily be modified to allow one circular gene order
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or even several circular chromosomes. Only the connectivity requirement has to be
relaxed correspondingly.

4 NP-Completeness for Common Intervals

To find larger conserved regions, we now address a model for gene clusters that, in
contrast to adjacencies, generally spans more than two genes: common intervals,
segments of the genome containing the same set of genes in an arbitrary order but
not interrupted by other genes.

The terminterval stems from the original, mathematical problem statement.
There, a common interval is defined on a set of permutations which is, without loss
of generality, assumed to include the identity(1, . . . , N) (otherwise all genes can be
renamed appropriately). In this case, a set of genes contiguous in all genomes has
to appear contiguously in the identity permutation as well and thus be of the form
{g, g + 1, . . . , g + l}, which corresponds to an interval[g, g + l]. In our framework
however, a common interval is represented as an arbitrary subset of genes.

The detection of common intervals conserved among several gene orders is a
well studied problem. For details, we refer to the recent review of Bergeron et al.
(2008).

As already detailed in Introduction, common intervals weresuccessfully ap-
plied in ancestral gene order reconstruction (Adam et al., 2007; Chauve and Tan-
nier, 2008; Stoye and Wittler, 2009).

4.1 Basic Common Intervals

In line with other studies, we base our definition on the notion of character sets,
which enables us to formalize the cluster model in a straightforward way. Since
we utilize this term for models on signed sequences later on,we directly define it
for the general, signed case. Although, in our framework, a common interval is
defined on asinglegene order, we stick to the termcommonto not confuse the
reader familiar with this gene cluster model by redefining the same concept under
a different name.

Definition 6 (Character Set) Let s = (a1, . . . , a|s|) be a signed sequence. Then,
the character setof s, denotedCS(s), is the set of all elements ins: CS(s) :=
{

|a| | a ∈ {a1, . . . , a|s|}
}

.

Definition 7 (Common Intervals on Sequences)Let GN := {1, . . . , N} be a set
of genes. Then, a common intervalc ⊆ GN with |c| > 1 is contained in a sequence
s overGN if and only ifs contains a substrings′ such thatCS(s′) = c.

A common interval can occur multiple times in one genome. Furthermore, one
occurrence of a common interval in a genome may contain several occurrences of
the same gene, as illustrated by the following example.
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Example 2 Consider the above model forN = 6 and sequences = (5, 4, 2, 1, 2, 3, 6).
Then, the common interval{1, 2, 3, 4} is contained ins as illustrated below, where
the corresponding substring is underlined:

(5, 4, 2, 1, 2, 3, 6) .

Recall that we want to find an answer to the question: Given a set of common
intervalsC and a multiplicity threshold functionm, is there a valid gene order that
contains all elements ofC and meets the restrictions imposed bym? As we will
show now, this problem is NP-complete.

Theorem 1 The consistency problem for common intervals on sequences is NP-
complete, even ifmax{m(g)} = 2 andmax{|c| | c ∈ C} = 3.

Before giving the proof, we would like to emphasize that thisis the strongest
possible result. If the maximum multiplicity would be one, the problem becomes
the polynomially solvable Consecutive Ones Problem (Boothand Lueker, 1976).
If the maximum cluster size is restricted to two, this corresponds to the model of
adjacencies, for which we gave a polynomial algorithm in theprevious section.

Proof. One can easily formulate an algorithm that verifies a given solution, i.e., a
proper gene order, for correctness in polynomial time, which shows that the prob-
lem belongs to the complexity class NP.

We will show NP-hardness of the consistency problem on common intervals by
reduction from 3SAT(3), which has been proven to be NP-complete by Papadim-
itriou (1994). 3SAT(3) is a restricted version of 3SAT in which every variable
has exactly two positive and one negative occurrence in the clauses.1 The general
technique of the reduction is similar to that used in Maňuch and Patterson (2010)
to prove NP-hardness for a generalized variant of the Consecutive Ones Problem.
Please note that, in the rather abstract ambience of this proof, we will use the term
objectinstead ofgene.

Given a 3SAT(3) formulaφ with variablesX = {x1, . . . , xn} and clausesC =
{c1, . . . , cm}, we construct an instanceCφ of the consistency problem for common
intervals on sequences consisting of at most5n+2m objects of multiplicity at most
two and at most4n + 2m common intervals of size two or three for which a valid
sequences exists if and only ifφ is satisfiable.

For this instanceφ of 3SAT(3), we say that a clauseselectsone of its literals in
a truth assignment ofφ if this literal has valuetrue in this assignment. Obviously,
a truth assignment ofφ is a satisfying truth assignment if and only if every clause
selects at least one literal and for everyx ∈ X, at most one ofx and¬x is selected.

1We remark that the exact formulation of 3SAT(3) in Papadimitriou (1994) allows also variables
with one negated and two positive occurrences, but these caneasily be converted to the other type
of variables by replacing them with their negations in all clauses. Clearly, this does not affect the
complexity of the problem.
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We design an instanceCφ of the consistency problem composed of clause gadgets
which will guarantee the first condition and variable gadgets which will ensure the
second condition.

For each 2-clauseci with literalsc1
i andc2

i , we add toCφ the two objectsc1
i and

c2
i , each of multiplicity two, and the two objectsc∗i andc∗∗i , each of multiplicity

one, and the subsetsS1
i = {c1

i , c
2
i , c

∗
i } andS2

i = {c∗i , c
∗∗
i }. This is referred to as the

2-clause gadget.
For each 3-clauseci with literals c1

i , c
2
i andc3

i , we add toCφ the three objects
c1
i , c

2
i and c3

i , each with multiplicity 2, and the subsetSi = {c1
i , c

2
i , c

3
i }. This is

referred to as the3-clause gadget.

Figure 4 shows graphical representations of these gadgets,which also high-
lights that an instance of the consistency problem for common intervals on se-
quences can be viewed as a hypergraph with a vertex for each object and a hyper-
edge for each common interval. A sequence that is consistentwith this instance is
then a collection of walks on this hypergraph thatcoverseach hyperedge, that is,
for each hyperedgee there is a connected subwalk containing all and only vertices
in e, such that no vertexv is visited more thanm(v) times.

We say that a literal objectcj
i is selectedin strings, if in s, c

j
i is enclosed on

both the left and right side by at least one object of the clause gadget for clauseci.
Note that in both clause gadgets, at least one of its literal objects is selected in any
valid strings. For the 2-clause gadget, a valid strings has to contain one of the
substringsc1

i , c
2
i , c

∗
i , c

∗∗
i or c2

i c
1
i , c

∗
i , c

∗∗
i , or one of their reversals. For the 3-clause

gadget, a valid strings has to contain one of the substringsc1
i , c

2
i , c

3
i or c2

i , c
1
i , c

3
i ,

or c1
i , c

3
i , c

2
i , or one of their reversals. Clearly, for each clause and eachof these

substrings, at least one literal of the clause is selected.
Now, all 3n literal objectscj

i from the set of clause gadgets forC will appear
in n variable gadgets described below. For each variablexℓ with the two positive
occurrencescα

i andc
β
j and the negative occurrencec

γ
k, we already added toCφ the

objectscα
i , c

β
j andc

γ
k, each of multiplicity two in the corresponding clause gadgets

for the clauses containingxℓ and¬xℓ. We further add toCφ the two objectsx′
ℓ and

x′′
ℓ , each of multiplicity one, and the four subsetsP 1

ℓ = {cα
i , c

γ
k, x

′
ℓ}, P 2

ℓ = {x′
ℓ, c

β
j },

P 3
ℓ = {cβ

j , c
γ
k}, P 4

ℓ = {cα
i , x′′

ℓ}. This is referred to as thevariable gadgetfor xℓ,
depicted in Figure 5.

We will show that the variable gadget forxℓ ensures that in a valid string literal
c
γ
k is never selected together withcα

i or cβ
j . Consider a valid strings where the literal

c
γ
k is selected. Since one copy ofc

γ
k is completely used up by its clause gadget,s

must contain the substringcβ
j , c

γ
k, c

α
i , x′

ℓ, c
β
j or its reversal because it is the only way

to ensure consistency for subsetsP 1
ℓ , P 2

ℓ andP 3
ℓ with the one remaining copy of

c
γ
k. Since the above substring contains two occurrences ofc

β
j , literal cβ

j cannot be
selected. If literalcα

i is also selected, then there is no way thats can be consistent
with P 4

ℓ , a contradiction to the fact thats is valid. It follows that ifCφ has a valid
strings, thenφ is satisfiable.
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We now show that the converse holds, namely ifφ has a satisfying truth assign-
mentτ , thenCφ has a valid strings. Givenτ , we constructs as follows.

For each clauseci, we pick one literalcj
i with valuetrue in τ . If ci is a 2-clause,

we create a substringcj−1

i , c
j
i , c

∗
i , c

∗∗
i satisfyingS1

i andS2
i , and if it is a 3-clause, a

substringcj−1

i , c
j
i , c

j+1

i satisfyingSi, where the upper indices are taken modulo3.
For any variablexℓ with the two positive occurrencescα

i andc
β
j and the negative

occurrencecγ
k:

1. if τ(xℓ) = false, we create the substringscβ
j , c

γ
k, c

α
i , x′

ℓ, c
β
j andcα

i , x′′
ℓ , fulfill-

ing all P 1,2,3,4
ℓ ; and

2. if τ(xℓ) = true, we create the substringx′′
ℓ , c

α
i , c

γ
k, x

′
ℓ, c

β
j , c

γ
k, fulfilling all

P
1,2,3,4
ℓ .

The requirements imposed by all given common intervals are fulfilled. It re-
mains to be shown that the substrings can be merged to one string s that satisfies
the multiplicity restrictions as well. First, we should note that each of the objects
with multiplicity one,c∗i , c

∗∗
i , x′

ℓ, x
′′
ℓ , appears only in one of the created substrings,

and thus satisfies the multiplicity condition (no matter howthe substrings are con-
catenated). The objects with multiplicity two are only the literal objects. Since
each literal object is contained in exactly one clause gadget and exactly one vari-
able gadget, it appears exactly once in the clause substrings and at most twice in the
variable substrings. If a literal object appears only once in the variable substrings,
then the multiplicity restriction for this object is satisfied.

Consider a literal objecto that appears twice in the variable substrings. It is
either cα

i or c
β
j , wherecα

i and c
β
j are positive occurrences of a variablexℓ and

τ(xℓ) = false, or c
γ
k, wherec

γ
k is the negative occurrence of a variablexℓ and

τ(xℓ) = true. In any case, (a) one occurrence ofo in the variable substrings is the
first or the last element of the variable substring; and (b)o cannot be picked in its
clause (as it isfalse), and thus appears as the first or the last element in the clause
substring that contains it. Consequently, the two substrings (one clause and one
variable) can be merged to one by reusing the literal objecto, and thus only two
copies ofo are used. Since each of these merges connects one clause substring and
one variable substring and each variable substring is used in at most one merge, it
follows that these merges cannot create a cycle.

Eventually, any concatenation of the remaining substringsyields a strings that
is consistent withCφ. Thus ifφ has a satisfying assignmentτ , thenCφ has a valid
strings.

Since the number of objects used in the construction is at most 5n + 2m, the
number of common intervals is at most4n + 2m, and each common interval is of
size at most three, i.e., the construction is linear in the size ofφ, it can be built in
linear time, and hence the consistency problem on common intervals is NP-hard.

�
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4.2 Variants of Common Intervals

Besides its classical definition, there are different generalizations of common in-
tervals on sequences discussed in the literature, such as r-window clusters (Fried-
man and Hughes, 2001; Durand and Sankoff, 2002), and max-gapclusters (He and
Goldwasser, 2005; Hoberman and Durand, 2005; Pasek et al., 2005), or approxi-
mate gene clusters (Rahmann and Klau, 2006; Böcker et al., 2009). Since the con-
sistency problem is NP-complete for basic common intervals, any generalization is
NP-hard as well.

In contrast to generalizations, there are also other cluster models which are
restricted variants of common intervals. In the following,we will discuss such
models, in particular framed and nested common intervals.

Framed Common Intervals

This gene cluster model, common intervals framed by two genes whose orien-
tations have to be conserved, was first introduced on permutations asconserved
intervals(Bergeron and Stoye, 2006). In gene order reconstruction, framed com-
mon intervals on permutations was the first model to formallystate the problem
of finding putative ancestral sets of gene clusters preserving consistency (Bergeron
et al., 2004).

Definition 8 (Framed Common Intervals on Signed Sequences) LetGN :=
{1, . . . , N} be a set of genes. A framed common interval[a I b] consists of two
extremitiesa andb with |a|, |b| ∈ GN , and a set ofinner elementsI ⊆ GN . We say
that [a I b] is contained in a signed sequences, if and only if, ins, a is followed
by b or −b is followed by−a, and the character set of the substring between the
extremities is equal toI.

According to this definition, a gene can be an extremity and aninner element,
or even a left and right extremity at the same time. Apart fromthat, analogously to
basic common intervals, a cluster can occur multiple times in one genome, and one
gene can be contained several times in one cluster occurrence, as illustrated by the
following example.

Example 3 Consider the model of framed common intervals forN = 6 and se-
quences = (5, 4,−2,−1, 2,−3, 6). Besides others, the framed common interval
[4 {1, 2}−3], is contained ins as illustrated by thebox diagrambelow, where the
occurrences of the extremities and the inner elements are surrounded by rectangles:

s = ( +5, +4, −2, −1, +2, −3, +6 ) .

The obvious relationship of basic and framed common intervals allows us to
infer an important correlation of these models with respectto the consistency prob-
lem: Any instance of this problem for common intervals can bereduced to an

13



instance of framed common intervals. Based on this, we can deduce the following
statement.

Theorem 2 The consistency problem for framed common intervals on signed se-
quences is NP-complete, even ifmax{m(g)} = 2 andmax{|I| | [a I b] ∈ C} = 6.

Proof. Again, one can easily formulate an algorithm that verifies a given solution
for correctness in polynomial time, which shows that the problem belongs to the
complexity class NP.

NP-hardness is shown by reducing the basic common intervalsused in the proof
of Theorem 1 to framed common intervals.

The basic idea is to replace each common intervalB = {e1, . . . , em} by a
framed common intervalB = [B̃ {e1, . . . , em, . . .} B̄] containing, besides others,
the basic common interval as inner elements. Then, if the framed common inter-
vals allow for a valid gene orders, there is a valid gene orders′ for the original
instance on basic common intervals: We simply remove all newly introduced ob-
jects froms such that only the objects contained in the basic common intervals are
left in s′. Because the inner elements of all framed common intervals have to occur
contiguously ins, the objects of the basic common intervals occur contiguously in
s′.

Since the given basic common intervals used in the proof of Theorem 1 overlap,
the framing elements have to be included into the set of innerelements of overlap-
ping intervals. We use the following technique to ensure that, if there is a valid gene
order for the basic common intervals, there is a valid gene order for the constructed
set of framed common intervals. Together with the argument in the previous para-
graph, this will yield equivalence of the two instances of the consistency problem.

For each basic common intervalB = {e1, . . . , em} overlapping with intervals
B1, . . . , Bk, we create a framed common intervalB = [B̃ {e1, . . . , em, B̃1, . . . , B̃k, B̄1, . . . , B̄k} B̄]
containing the framing elements ofB1, . . . , Bk, the framed common intervals con-
structed forB1, . . . , Bk. Note that this means that the framing elementsB̃ andB̄

also appear as inner elements toB1, . . . , Bk. All basic common intervals used in the
proof of Theorem 1 have the property that no common interval is included in an-
ther, and furthermore, in a valid gene order, an occurrence of a given basic common
interval can overlap with the occurrence of only one other basic common interval
on each side. Assume, the occurrence of someB overlaps withBl in e1, . . . , el

on one side and withBr in er, . . . , em on the other side. Then, we can extend
the substring that fulfillsB to B̃, e1, . . . , el, B̄l, . . . , B̃r, er, . . . , em, B̄. BetweenB̄l

and B̃r we include all remaining inner elements ofB in an arbitrary order. The
resulting substring fulfillsB and also allows a realization of the framed common
intervals created forBl andBr. We can choose the orientation (the sign) of the
new objects in the string extension in accordance to the definition of the framed
common intervals, e.g., positive in both. This extension can be performed for all
common intervals such that, finally, all framed common intervals are contained in
the extended, overall string.

14



What remains to be shown is that such a construction is possible using at most
six inner elements in each framed common interval, as well asthat a maximum
multiplicity of two is sufficient.

To minimize the number of inner elements, we do not always addboth framing
elements to all overlapping intervals. The structure of thecommon intervals used
in the gadgets of the proof of Theorem 1 restricts the possible overlaps of their
occurrences in a valid gene order. As can be seen in the proof of Theorem 1, if
there is a valid sequence, we can construct one using the following orders (or their
reversals) of interval occurrences within the gadgets:

P 3

ℓ , P 1

ℓ , P 2

ℓ or P 4

ℓ , P 1

ℓ , P 2

ℓ , P 3

ℓ , andS1

i , S
2

i .

Within the gadget,P 3
ℓ can only be followed byP 1

ℓ . We thus add̄P 3
ℓ (but notP̃ 3

ℓ ) to
the inner elements ofP1

ℓ , andP̃ 1
ℓ (but notP̄ 1

ℓ ) to those ofP3

ℓ . Analogously, we add
P̄ 1

ℓ to P
2

ℓ andP̃ 2
ℓ to P

1

ℓ , P̄ 4
ℓ to P

1

ℓ andP̃ 1
ℓ to P

4

ℓ , P̄ 2
ℓ to P

3

ℓ andP̃ 3
ℓ to P

2

ℓ , andS̄1
i to S

2

i

andS̃2
i to S

1

i .
A 2-clause gadgetci overlaps the gadgets of two variables, sayxj andxk. As

can be seen in the proof of Theorem 1, if there is a valid sequence, we can construct
one with one of the following orders (or their reversals) of interval occurrences:

P
p
j , S1

i , S
2

i , or P
q
k , S1

i , S
2

i

wherep, q ∈ {2, 3, 4}, depending on where it overlaps the variable gadgets. Thus,
we addS̃1

i to the inner elements ofPp
j andP

q
k.

A 3-clause gadgetci overlaps the gadgets of three variables, sayxj , xk andxℓ

in the elementc1
i , c

2
i andc3

i , respectively. As can be seen in the proof of Theorem 1,
if there is a valid sequence, we can construct one with one of the following orders
(or their reversals) of interval occurrences:

P
p
j , Si, P

q
k or P

p
j , Si, P

r
ℓ or P r

ℓ , Si, P
q
k ,

wherep, q, r ∈ {2, 3, 4}, depending on where the variable gadgets are overlapped
by Si. We addS̃i to the inner elements ofPp

j , S̄i to the inner elements ofPq
k, andS̃i

andS̄i to the inner elements ofPr
ℓ . This way, in any of the three cases, there is at

least one copy of each framing element ofSi available on both sides.

In summary, we reduce a given set of common intervals as used in the proof of
Theorem 1 to a set of framed common intervals with at most six inner elements as
follows:

For the basic common intervalsP 1,2,3,4
ℓ used in the variable gadget forxℓ with

positive occurrencescα
i andc

β
j and negative occurrencecγ

k, we create the framed
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common intervals

P
1

ℓ = [P̃ 1

ℓ {cα
i , c

γ
k, x

′
ℓ, P̃

2

ℓ , P̄ 3

ℓ , P̄ 4

ℓ } P̄ 1

ℓ ],

P
2

ℓ = [P̃ 2

ℓ {x′
ℓ, c

β
j , P̄

1

ℓ , P̃ 3

ℓ } ∪ I
β
j P̄ 2

ℓ ],

P
3

ℓ = [P̃ 3

ℓ {cβ
j , c

γ
k, P̃

1

ℓ , P̄ 2

ℓ } ∪ I
γ
k P̄ 3

ℓ ] and

P
4

ℓ = [P̃ 4

ℓ {cα
i , x′′

ℓ , P̃
1

ℓ } ∪ Iα
i P̄ 4

ℓ ], where

I
µ
t =



















{S̃t} if µ = 1 and|ct| = 3,

{S̄t} if µ = 2 and|ct| = 3,

{S̃t, S̄t} if µ = 3 and|ct| = 3,

{S̃1
t } if |ct| = 2.

For the basic common intervalsS1,2
i used in the 2-clause gadget forci, we create

the framed common intervals

S
1

i = [S̃1

i {c
1

i , c
2

i , c
∗
i , S̃

2

i , P̄ (c1

i ), P̄ (c2

i )} S̄1

i ] and

S
2

i = [S̃2

i {c
∗
i , c

∗∗
i , S̄1

i } S̄2

i ],

where we definēP (cj
i ) to be the right framing element of the (unique)P

m
ℓ that

containscj
i andS̃1

i as inner elements (m can only be 2, 3 or 4).
For the basic common intervalSi used as in the 3-clause gadget forci, we create

the framed common interval

Si = [S̃i {c
1

i , c
2

i , c
3

i , P̄ (c1

i ), P̄ (c2

i ), P̄ (c3

i )} S̄i],

where we definēP (cj
i ) to be the right framing element of the (unique)P

m
ℓ that

containscj
i , andS̃i and/orS̄i as inner elements (m can only be 2, 3 or 4).

It remains to be shown that a maximum multiplicity of two for all newly added
elements suffices. This is true, because each new element is included in the inner
elements of at most two intervals. In fact, we can assign a multiplicity of one to
some of the objects. We define:m(P̄ 1) = m(P̃ 2,3,4) = m(S̃2

i ) = m(S̄2
i ) = 1 and

m(P̃ 1) = m(P̄ 2,3,4) = m(S̃i) = m(S̄i) = 2.

Since the number of objects used in the construction is at most 6n + 8m, the
number of framed common intervals is at most4n+2m, and each framed common
interval contains at most six inner elements, i.e., the construction is linear in the size
of φ, it can be built in linear time, and hence the consistency problem on common
intervals is NP-hard. �

Please note that, again, for a maximum multiplicity of one, polynomial solu-
tions exist. Framed common intervals with no inner elementsare equivalent to
signed adjacencies, for which we gave an efficient solution.However, there is a
gap left for framed common intervals with one to five inner elements. For these,
the complexity is still open.
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Nested Common Intervals

Hoberman and Durand (2005) discussed nestedness as a desired property of gene
clusters and proposed a first algorithm to identify respective clusters. Recently,
nested common intervalswere formally defined and studied in Blin et al. (2010),
and gave efficient algorithms to detect them in genomes modeled both as permuta-
tions and as sequences.

Definition 9 (Nested Common Intervals on Sequences)Let GN := {1, . . . , N}
be a set of genes. The structure of a nested common interval isdefined recursively.
A nested common intervalis either

(i) an unordered pair of genes{a, b} with a 6= b, which is contained in a se-
quences overGN if and only ifa andb are adjacent ins, or

(ii) an unordered pair{c, a} of a nested common intervalc and a genea, which
is contained in a sequences if and only if, ins, a is adjacent to a substring
s′ of s such thatCS(c) = CS(s′) andc is contained ins′,

where the character set of a nested common interval is the setof all contained
genes:CS({a, b}) := {a, b} andCS({c, a}) := CS(c) ∪ {a}. Further, we define
the size of a cluster being|{a, b}| := 2 and|{c, a}| := |c| + 1, respectively.

Similar to the other cluster models discussed above, any nested common inter-
val may occur multiple times in one genome and one gene may be contained mul-
tiple times in the occurrence of a cluster in one genome. Analogously to framed
common intervals, one gene may be incorporated in the definition of one cluster
several times.

Example 4 Consider the model of nested common intervals forN = 6 and se-
quences = (5, 4, 2, 1, 2, 3, 6). Then, besides others, the nested common interval
{{{2, 3}, 1}, 4} is contained ins as illustrated below, where the occurrences of the
subclusters are indicated by lines:

(5, 4, 2, 1, 2, 3, 6) .

In contrast,{{{1, 3}, 2}, 4} is not contained ins since, although gene4 is adjacent
to a substring with character set{1, 2, 3}, none of the occurrences of gene2 is
adjacent to a substring with character set{1, 3}.

Note that cluster{{2, 3}, 3} is not contained ing, because3 is not adjacent to
a substring with character set{2, 3}, whereas cluster{{1, 2}, 2} is contained ins:

(5, 4, 2, 1, 2, 3, 6) .

Even the strict assumption of nestedness is not strong enough to allow an effi-
cient verification of consistency. In fact, similar to basiccommon intervals, there
is no gap left for fixed-parameter tractability in the considered parameters.

Theorem 3 The consistency problem for nested common intervals on sequences is
NP-complete, even ifmax{m(g)} = 2 andmax{|c| | c ∈ C} = 3.
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Proof. NP-hardness is proven by reduction from 3SAT(3) using a construction
very similar to that of Theorem 1. Given 3SAT(3) formulaφ, we will again de-
sign an instanceCφ of the consistency problem onnestedcommon intervals on
sequences comprising of clause gadgets and a variable gadget, and then argue why
they simulate exactly this instanceφ.

For each 2-clauseci with literals c1
i and c2

i , we add toCφ the two objectsc1
i

and c2
i , each of multiplicity two, and the objectc∗i of multiplicity one, and the

nestedcommon intervalS1
i = {{c1

i , c
2
i }, c

∗
i }. The 2-clause gadget is depicted in

Figure 6(a).
For each 3-clauseci with literals c1

i , c
2
i andc3

i , we add toCφ the three objects
c1
i , c

2
i andc3

i , each with multiplicity two, the three objectsc̃1
i , c̃

2
i andc̃3

i , each with
multiplicity one, the three objects̄c1

i , c̄
2
i and c̄3

i , each with multiplicity two and
the six nested common intervalsS1

i = {{c1
i , c̄

1
i }, c̃

1

i }, S
2
i = {{c2

i , c̄
2
i }, c̃

2

i }, S
3
i =

{{c3
i , c̄

3
i }, c̃

3
i }, S

4
i = {c̄1

i , c̄
2
i }, S

5
i = {c̄2

i , c̄
3
i }, S

6
i = {c̄3

i , c̄
1
i }. The 3-clause gadget is

depicted in Figure 6(b).

Note again that in both clause gadgets, at least one of the literal objects is
selected in any valid strings. For the 2-clause gadget, strings has to contain
one of the substringsc1

i , c
2
i , c

∗
i or c2

i , c
1
i , c

∗
i , or one of their reversals, thus a literal

object is always selected in this case. In the 3-clause gadget, if no literal object is
selected in strings, i.e.,s contains substrings̃cq

i , c̄
q
i , c

q
i (or their reversals) for every

q ∈ {1, 2, 3}, there is only one remaining copy ofc̄q
i for q ∈ {1, 2, 3} and hence

there is no way thats can be consistent with all ofS{4,5,6}
i simultaneously without

creating a cycle, a contradiction. Therefore at least one literal object is selected in
this case as well.

For each variablexℓ, we will use the same construction as in the proof of
Theorem 1 with one exception that instead of the basic commoninterval P 1

ℓ =
{cα

i , c
γ
k, x

′
ℓ}, we use the nested common intervalP 1

ℓ = {{cα
i , c

γ
k}, x

′
ℓ}, cf. Figure 7.

It follows by the same argument as in the proof of Theorem 1 that in a valid string
c
γ
k is never selected together withcα

i or c
β
j . It follows that if Cφ has a valid strings,

thenφ is satisfiable.

We now show that the converse holds, namely ifφ has a satisfying truth assign-
mentτ , thenCφ has a valid strings. Givenτ , we constructs as follows.

For each clauseci, we pick one literalcj
i with valuetrue in τ . If ci is a 2-clause,

we create a substringcj−1

i , c
j
i , c

∗
i satisfyingS1

i , and if it is a 3-clause, substrings
(i) c̃j

i , c
j
i , c̄

j
i , c̄

i+1

i , c̄j+2

i , c̄j
i , (ii) c

j+1

i , c̄j+1

i , c̃j+1

i , and (iii) c
j+2

i , c̄j+2

i , c̃j+2

i satisfying
S
{1,...,6}
i , where the upper indices are taken modulo 3. The clause strings have the

same properties as the clause string in the proof of Theorem 1: each literal object
appears only once in the clause substrings and if a literal object has the valuefalse
in τ then it appears as the first or last element in one of the clausesubstrings. For
each variablexℓ, we create the same substrings satisfying allP

1,2,3,4
ℓ as in the proof

of Theorem 1.
It can be easily checked that the requirements imposed by allgiven nested com-

mon intervals are fulfilled. It follows by the same argument as in the proof of Theo-
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rem 1 that the created substrings can be merged and concatenated into a valid string
s. Thus, ifφ has a satisfying assignmentτ , thenCφ has a valid strings.

Since the number of objects used in this construction is at most 5n + 6m, the
number of nested common intervals is at most5n + 9m, and each nested common
interval is of size at most three, i.e., the construction is linear in the size ofφ, it can
be built in linear time, and hence the consistency problem oncommon intervals is
NP-hard. �

Further Variations and Restrictions

Our NP-completeness results also hold for further variations of the above models.
If we preclude a nested common interval to contain any gene multiple times,

e.g., {{a, b}, a}, or if we preclude any gene to be left and right extremity of a
framed common interval, e.g.,[a I a], our proof techniques still apply and thus
NP-completeness still holds. Also, if we restrict any occurrence of a common or
nested common interval within a genome to contain each gene only once, NP-
completeness still holds.

Instead of restricting the multiplicity for each gene individually, one could de-
fine a maximum total number of genes, i.e., a maximum genome length. But going
back to the NP-hardness proofs, we find that they also hold in this model. In the
proofs for basic and nested common intervals, each geneg with multiplicity m(g)
occurs in at least2m(g)−1 intersecting gene clusters such that all “allowed” copies
of that gene are actually required. Thus, there is no flexibility left to use one gene
only m(g1)− 1 times and another genem(g2) + 1 times. Also, the auxiliary genes
used in the proof for framed common intervals have all to be used exactly as often
as specified. Hence, in all models, the proofs also hold if only

∑

g m(g) is given
as an overall objective. This, in turn, directly implies NP-hardness of the mini-
mization version of the consistency problem on these models: Given a set of gene
clusters, find a minimum-length sequence of genes that contains all given clusters.

Since a typical prokaryotic genome consists of one circularchromosome, we
are also interested in modeling gene order as circular sequences. In fact, based on
the above NP-completeness results, we can deduce NP-completeness of the consis-
tency problem for all the considered gene cluster models on circular sequences in
a straight forward fashion.

To redefine the cluster models, we allow any gene cluster to appear at the end
of a sequence(. . . , g|g|−1, g|g|) such that its occurrence can be continued at the
beginning of the sequence(g1, g2, . . .), i.e., we assume circular gene orders.

Corollary 1 The consistency problem on circular sequences is NP-complete for
the gene cluster models of basic, framed and nested common intervals for the max-
imum multiplicities and cluster sizes as stated in Theorems1–3.
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Proof. One can easily formulate an algorithm that verifies a given solution for
correctness in polynomial time, which shows that the problem belongs to the com-
plexity class NP.

The consistency problem for the considered gene cluster models on linear se-
quences is NP-complete according to Theorems 1, 2 and 3.

Let the set of genesGN , the set of clustersC and the multiplicity functionm
define an instance of the consistency problem for basic, framed or nested common
intervals on linear sequences. Then, we reduce this instance to a problem instance
of the corresponding consistency problem on circular sequences in polynomial time
as follows:

• GN+2 := GN ∪ {N+1, N+2},

• C ′ := C ∪ {c}, wherec is a gene cluster containing exactly the genesN +1
andN+2 (the basic or nested common interval{N+1, N+2}, or the framed
common interval[N+1 {}N+2], respectively),

• m′ := m ∪ {N+1 7−→ 1, N+2 7−→ 1} .

If C is consistent with respect tom, then there is a linear sequenceg =
(a1, . . . , al) satisfying the requirements ofm and containing all clusters inC. Ob-
viously, the circular sequenceg′ := (a1, . . . , al, N +1, N +2) also contains all
clusters inC and clusterc and satisfies the requirements ofm′.

Now, we show the opposite implication: IfC ′ is consistent with respect to
m′, then there is a circular sequenceg′ = (a1, . . . , al, N +1, N +2) satisfying the
requirements ofm′ and containing all clusters inC ′. Since no cluster inC spans
the genesN+1 andN+2, the linear sequenceg := (a1, . . . , al) contains all clusters
in C ′ except forc, i.e., all clusters inC, and satisfies the requirements ofm. �

So far, we only considered genomes composed of one chromosome. As already
mentioned in Section 3, the algorithm presented for adjacencies can easily be modi-
fied to handle several chromosomes—linear or circular. Also, the NP-completeness
results hold for several linear chromosomes. In fact, the proofs are based on the
construction of several substrings which could be kept as separate chromosomes in-
stead of concatenating them to one string. In contrast, the proof of the latter lemma
builds on exactly one circular chromosome. It is open whether NP-completeness
holds for the case of several circular chromosomes for thesemodels.

5 Conclusion

In this paper, we have discussed the consistency problem, i.e., the problem of decid-
ing whether there exists a valid gene order comprising a given set of gene clusters.
We have discussed this question for different gene cluster models on sequences
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with restricted gene multiplicities. In summary, we identified a strict border be-
tween gene cluster models for which we can verify consistency efficiently and
those for which we cannot. The complexity rises drasticallyfrom linear time for
adjacencies to NP-hard for more general cluster models, even if they are strongly
restricted.

This raises the question for a sequence-based gene cluster model that, on the
one hand, allows some degree of flexibility and, on the other hand, offers a polynomial-
time algorithm to verify consistency. The integration of such a model into any of
the existing reconstruction methods could increase sensitivity. Actually, first re-
sults on both simulated and real data indicate that within segments of conserved
gene content, the order of the genes is conserved almost exactly (Wittler, 2010).
Thus, a model covering only single missing or additional genes, or the reversal of
two neighboring genes could already enhance reconstruction results strongly.

On permutations, the consistency problem for common intervals is the consec-
utive ones property (C1P) problem (Booth and Lueker, 1976; Habib et al., 2000;
Hsu, 2002; Hsu and McConnell, 2004). Thus, one approach thatincludes addi-
tional or missing genes is to relax the condition of the consecutivity of the ones
of each row, by allowing gaps, with some restriction on the nature of these gaps.
The question is then to decide if there is an ordering of the columns that satisfies
these relaxed C1P conditions. In Goldberg et al. (1995), theauthors introduced the
k-consecutive-ones property (k-C1P): Decide if the columns of a binary matrix can
be permuted such that each row contains at mostk blocks. This problem is NP-
complete for everyk ≥ 2 (Goldberg et al., 1995), and also minimizing the number
of gaps in the entire matrix is NP-complete even if each row ofthis matrix has at
most two ones (Haddadi, 2002).

In the spirit of this approach, Chauve et al. (2009) define thegapped C1P: given
two integersk andδ, a binary matrixM has the(k, δ)-C1P if its columns can be
permuted such that each row contains at mostk blocks and no gap larger thanδ.
While they show that such a property can be decided in polynomial-time when the
number of ones in each row ofM is bounded, they show that the general case is
hard. In particular, they show for allk ≥ 2, δ ≥ 1, (k, δ) 6= (2, 1) that the(k, δ)-
C1P is NP-complete. So indeed, in this case, aside from the single open case of the
complexity of the (2,1)-C1P, there is also a strict complexity border between the
classical C1P ((1,0)-C1P in the gapped C1P context) and thisrelaxed model.

In Maňuch and Patterson (2010), the authors show also for binary matrices
of bounded degreed that thek-C1P is NP-complete even whend = 3, which
is quite suprising, as this is the weakest form of consecutivity requirement: in
each row, only two of the ones must be adjacent. This is shown with an NP-
completeness construction based on finding a collection of walks on a hypergraph
H that coverseach hyperedge inH, a technique that inspired some of the NP-
completeness constructions in this work.

We implemented the gene order graph to model adjacencies on sequences and
integrated this gene cluster model into our unified reconstruction framework, pre-
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sented in Stoye and Wittler (2009), available from the web sitebibiserv.techfak.
uni-bielefeld.de/rococo/. An elaborate description of the method and
the results can be found in Wittler (2010). We refrain from reporting detailed re-
sults here because these are concerned more with the reconstruction method than
with the general concept of consistency discussed in this paper. Nevertheless, we
would like to mention the following overall findings. Simulations showed that es-
timating the gene multiplicities using the simple maximum approach does not sig-
nificantly decrease the accuracy of the reconstruction compared to using the “real”
simulated copy numbers. Furthermore, we applied our methodto genomic data of
Corynebacteria using different gene cluster models: Common intervals on permu-
tations and adjacencies on sequences. A comparison of the results revealed a large
overlap. Nevertheless, many conserved segments could onlybe identified by either
of the approaches. This highlights the importance of studying gene cluster recon-
struction with respect to different, especially flexible, models for gene clusters and
the relaxed model of sequences for gene order.
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A. Z. Ion Măndoiu, editor,Bioinformatics Algorithms: Techniques and Applica-
tions, Wiley Book Series on Bioinformatics, Wiley.

A. Bhutkar, W. M. Gelbart, and T. F. Smith 2007. Inferring genome-scale re-
arrangement phylogeny and ancestral gene order: A drosophila case study.
Genome Biol., 8(11):R236.

22



G. Blin, D. Faye, and J. Stoye 2010. Finding nested common intervals efficiently.
J. Comp. Biol., 17(9):1183–1194.

S. Böcker, K. Jahn, J. Mixtacki, and J. Stoye 2009. Computation of median gene
clusters.J. Comp. Biol., 16(8):1085–1099.

K. S. Booth and G. S. Lueker 1976. Testing for the consecutiveones property,
interval graphs and graph planarity usingPQ-tree algorithms.J. Comput. Syst.
Sci., 13(3):335–379.

C. Chauve and E. Tannier 2008. A methodological framework for the reconstruc-
tion of contiguous regions of ancestral genomes and its application to mam-
malian genomes.PLoS Comput. Biol., 4(11):e1000234.
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...

Figure 1: Example for an artifact that arises when gene clusters are reconstructed
on the basis of gene orders, where any gene can occur arbitrarily often. A small
subtree over three genomes is shown exemplarily. The gene orders on the leaves
imply, beside others, the listed adjacencies. Any most parsimonious labeling would
assign all three adjacencies to the lowermost internal node, implying at least two
copies of gene1. Since genes are allowed to appear multiple times in a genome,
valid gene orders exist, all of which contain gene1 at least two times — for instance
the given gene order.
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0

Figure 2: An example to illustrate the proof of Lemma 1. Consider the set of genes
G7 with the multiplicitiesm(g) = 2 for g ∈ {2, 5} and otherwisem(g) = 1,
and the setC =

{

{1, 2}, {1, 3}, {2, 3}, {2, 4}, {5, 6}, {5, 7}, {6, 7}
}

of un-
signed adjacencies. The gene order graphG7(C) is depicted including the ex-
tensions described in the proof. The solid edges correspondto the original edges
as defined by the given adjacencies, and the dashed lines represent the auxiliary
edges. The obtained extended graph contains, for instance,the Eulerian cycle
(v0, v2, v1, v3, v2, v4, v0, v5, v6, v7, v5, v0), which corresponds to the valid gene or-
der(2, 1, 3, 2, 4, 5, 6, 7, 5).
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Figure 3: Illustration of the relation of improper and proper Eulerian cycles in an
extended signed gene order graph as described in the proof ofLemma 2.
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Figure 4: Graphical representations of the (a) 2-clause gadget and (b) 3-clause
gadget for clauseci. The multiplicity of the objects is indicated by the number
of dots. Common intervals are depicted by ellipses surrounding two or triangles
surrounding three objects, respectively.
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Figure 5: Graphical representation of the variable gadget for variablexℓ with posi-
tive occurrencescα

i andc
β
j and negated occurrencecγ

k in the clauses.
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Figure 6: Graphical representations of the (a) 2-clause gadget and (b) 3-clause
gadget for clauseci in the nested common intervals case. The dark shaded ovals
depict the nested part of nested intervals of size 3.
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Figure 7: Graphical representation of the variable gadget for variablexℓ with pos-
itive occurrencescα

i andc
β
j and negated occurrencecγ

k in the clauses in the nested
common intervals case.
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